Barman Barun Kumar, Hernández-Pinilla David, Cretu Ovidiu, Kikkawa Jun, Kimoto Koji, Nagao Tadaaki
Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, (NIMS), Tsukuba, Ibaraki, 305-0044, Japan.
Electron Microscopy Group, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan.
Adv Sci (Weinh). 2024 Nov;11(41):e2407090. doi: 10.1002/advs.202407090. Epub 2024 Sep 4.
Metal-free, luminescent, carbogenic nanomaterials (LCNMs) constitute a novel class of optical materials with low environmental impact. LCNMs, e.g., carbon dots (CDs), graphitic carbon nitride (g-CN), and carbonized polymer microspheres (CPM) show strong blue/cyan emissions, but rather weak yellow/red emission. This has been a serious drawback in applying them to light-emitting and bio-imaging applications. Here, by integrating single-component LCNMs in photonic microcavities, the study spectroscopically engineers the coupling between photonic modes in these microcavities and optical transitions to "reconfigure" the emission spectra of these luminescent materials. Resonant photons are confined in the microcavity, which allows selective re-excitation of phosphors to effectively emit down-converted photons. The down-converted photons re-excite the phosphors and are multiply recycled, leading to enhanced yellow/red emissions and resulting in white-light emission (WLE). Furthermore, by adjusting photonic stop bands of microcavity components, color adaptable (cool, pure, and warm) WLE is flexibly generated, which precisely follows the black-body Planckian locus in the chromaticity diagram. The proposed approach offers practical low-cost chromaticity-adjustable WLE from single-component, luminescent materials without any chemical or surface modification, or elaborate machinery and processing, paving the way for practical WLE devices.
无金属发光碳质纳米材料(LCNMs)是一类新型光学材料,对环境影响较小。LCNMs,例如碳点(CDs)、石墨相氮化碳(g-CN)和碳化聚合物微球(CPM),呈现出强烈的蓝色/青色发射,但黄色/红色发射相当微弱。这在将它们应用于发光和生物成像应用中一直是一个严重的缺点。在此,通过将单组分LCNMs集成到光子微腔中,该研究从光谱学角度设计了这些微腔中光子模式与光学跃迁之间的耦合,以“重新配置”这些发光材料的发射光谱。共振光子被限制在微腔内,这使得荧光粉能够被选择性地重新激发,从而有效地发射下转换光子。下转换光子重新激发荧光粉并被多次循环利用,导致黄色/红色发射增强并产生白光发射(WLE)。此外,通过调整微腔组件的光子禁带,可以灵活地产生颜色可调(冷色、纯色和暖色)的WLE,其在色度图中精确地遵循黑体普朗克轨迹。所提出的方法提供了一种实用的低成本色度可调WLE,其由单组分发光材料产生,无需任何化学或表面改性,也无需复杂的机械和加工,为实用的WLE器件铺平了道路。