Suppr超能文献

APIS:用于缺血性脑卒中分割的配对 CT-MRI 数据集——方法与挑战。

APIS: a paired CT-MRI dataset for ischemic stroke segmentation - methods and challenges.

机构信息

Biomedical Imaging, Vision, and Learning Laboratory (BIVL2ab), Universidad Industrial de Santander, Bucaramanga, Colombia.

Clínica FOSCAL, Floridablanca, Colombia.

出版信息

Sci Rep. 2024 Sep 4;14(1):20543. doi: 10.1038/s41598-024-71273-x.

Abstract

Stroke, the second leading cause of mortality globally, predominantly results from ischemic conditions. Immediate attention and diagnosis, related to the characterization of brain lesions, play a crucial role in patient prognosis. Standard stroke protocols include an initial evaluation from a non-contrast CT to discriminate between hemorrhage and ischemia. However, non-contrast CTs lack sensitivity in detecting subtle ischemic changes in this phase. Alternatively, diffusion-weighted MRI studies provide enhanced capabilities, yet are constrained by limited availability and higher costs. Hence, we idealize new approaches that integrate ADC stroke lesion findings into CT, to enhance the analysis and accelerate stroke patient management. This study details a public challenge where scientists applied top computational strategies to delineate stroke lesions on CT scans, utilizing paired ADC information. Also, it constitutes the first effort to build a paired dataset with NCCT and ADC studies of acute ischemic stroke patients. Submitted algorithms were validated with respect to the references of two expert radiologists. The best achieved Dice score was 0.2 over a test study with 36 patient studies. Despite all the teams employing specialized deep learning tools, results reveal limitations of computational approaches to support the segmentation of small lesions with heterogeneous density.

摘要

中风是全球第二大致死原因,主要由缺血性疾病引起。对脑损伤特征的描述与即刻关注和诊断对患者预后起着至关重要的作用。标准的中风方案包括最初的非对比 CT 评估,以区分出血和缺血。然而,在这个阶段,非对比 CT 对检测细微的缺血性改变的敏感性较差。相比之下,弥散加权 MRI 研究提供了更高的能力,但受到可用性有限和成本更高的限制。因此,我们理想的是将 ADC 中风病灶的发现整合到 CT 中,以增强分析并加速中风患者的管理。这项研究详细介绍了一项公开挑战,科学家们应用了顶级计算策略来描绘 CT 扫描上的中风病灶,利用配对的 ADC 信息。此外,这也是首次建立一个包含急性缺血性中风患者的 NCCT 和 ADC 研究的配对数据集。提交的算法在 36 名患者研究的测试研究中相对于两位专家放射科医生的参考值进行了验证。在测试研究中,最佳的 Dice 评分达到了 0.2。尽管所有团队都采用了专门的深度学习工具,但结果表明,计算方法在支持分割具有异质密度的小病灶方面存在局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdb3/11374904/f35227f8f2df/41598_2024_71273_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验