Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary.
Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117, Berlin, Germany.
Sci Rep. 2024 Sep 4;14(1):20592. doi: 10.1038/s41598-024-71444-w.
Human longevity leaders with remarkably long lifespan play a crucial role in the advancement of longevity research. In this paper, we propose a stochastic model to describe the evolution of the age of the oldest person in the world by a Markov process, in which we assume that the births of the individuals follow a Poisson process with increasing intensity, lifespans of individuals are independent and can be characterized by a gamma-Gompertz distribution with time-dependent parameters. We utilize a dataset of the world's oldest person title holders since 1955, and we compute the maximum likelihood estimate for the parameters iteratively by numerical integration. Based on our preliminary estimates, the model provides a good fit to the data and shows that the age of the oldest person alive increases over time in the future. The estimated parameters enable us to describe the distribution of the age of the record holder process at a future time point.
长寿领袖拥有非常长的寿命,在长寿研究的进展中起着至关重要的作用。在本文中,我们提出了一个随机模型,通过马尔可夫过程来描述世界上最年长者年龄的演变,其中我们假设个体的出生遵循一个随着时间推移而增加强度的泊松过程,个体的寿命是独立的,可以用具有时间依赖参数的伽马-戈珀兹分布来描述。我们利用了自 1955 年以来世界上最年长者称号获得者的数据集,并通过数值积分迭代计算参数的最大似然估计。根据我们的初步估计,该模型很好地拟合了数据,并表明未来最年长者的年龄会随着时间的推移而增加。估计的参数使我们能够描述未来某个时间点记录保持者过程的年龄分布。