Suppr超能文献

基于面部肌电特征模型与 PSO-CNN 算法相结合的飞行学员疲劳检测研究。

Research on fatigue detection of flight trainees based on face EMF feature model combination with PSO-CNN algorithm.

机构信息

College of General Aviation and Flight, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China.

出版信息

Sci Rep. 2024 Sep 4;14(1):20641. doi: 10.1038/s41598-024-71192-x.

Abstract

Even though the capability of aircraft manufacturing has improved, human factors still play a pivotal role in flight accidents. For example, fatigue-related accidents are a common factor in human-led accidents. Hence, pilots' precise fatigue detections could help increase the flight safety of airplanes. The article suggests a model to recognize fatigue by implementing the convolutional neural network (CNN) by implementing flight trainees' face attributions. First, the flight trainees' face attributions are derived by a method called the land-air call process when the flight simulation is run. Then, sixty-eight points of face attributions are detected by employing the Dlib package. Fatigue attribution points were derived based on the face attribution points to construct a model called EMF to detect face fatigue. Finally, the proposed PSO-CNN algorithm is implemented to learn and train the dataset, and the network algorithm achieves a recognition ratio of 93.9% on the test set, which can efficiently pinpoint the flight trainees' fatigue level. Also, the reliability of the proposed algorithm is validated by comparing two machine learning models.

摘要

尽管飞机制造能力有所提高,但人为因素仍然在飞行事故中起着关键作用。例如,与疲劳相关的事故是人为事故的一个常见因素。因此,飞行员的精确疲劳检测有助于提高飞机的飞行安全性。本文提出了一种通过实施卷积神经网络(CNN)来识别疲劳的模型,该模型通过实施飞行学员的面部特征来实现。首先,当运行飞行模拟时,通过称为地空呼叫过程的方法得出飞行学员的面部特征。然后,通过使用 Dlib 包检测到 68 个面部特征点。根据面部特征点得出疲劳特征点,以构建一个称为 EMF 的模型来检测面部疲劳。最后,实施了所提出的 PSO-CNN 算法来学习和训练数据集,网络算法在测试集上的识别率达到 93.9%,可以有效地确定飞行学员的疲劳程度。此外,通过比较两种机器学习模型验证了所提出算法的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/156b/11375052/c2d2356cd873/41598_2024_71192_Fig1_HTML.jpg

相似文献

2
Identification of Pilots' Fatigue Status Based on Electrocardiogram Signals.
Sensors (Basel). 2021 Apr 25;21(9):3003. doi: 10.3390/s21093003.
4
Reducing flight upset risk and startle response: A study of the wake vortex alert with licensed commercial pilots.
Brain Res Bull. 2024 Sep;215:111020. doi: 10.1016/j.brainresbull.2024.111020. Epub 2024 Jun 21.
6
Deficient Aeronautical Decision-Making Contributions to Fatal General Aviation Accidents.
Aerosp Med Hum Perform. 2023 Nov 1;94(11):807-814. doi: 10.3357/AMHP.6245.2023.
7
A comparison of general aviation accidents involving airline pilots and instrument-rated private pilots.
J Safety Res. 2021 Feb;76:127-134. doi: 10.1016/j.jsr.2020.11.009. Epub 2020 Dec 15.
8
Driver Fatigue Detection Based on Convolutional Neural Networks Using EM-CNN.
Comput Intell Neurosci. 2020 Nov 18;2020:7251280. doi: 10.1155/2020/7251280. eCollection 2020.
9
Wearable bio signal monitoring system applied to aviation safety.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:2349-2352. doi: 10.1109/EMBC.2017.8037327.

本文引用的文献

2
An analysis of human factors in fifty controlled flight into terrain aviation accidents from 2007 to 2017.
J Safety Res. 2019 Jun;69:155-165. doi: 10.1016/j.jsr.2019.03.009. Epub 2019 Mar 20.
3
Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness.
Neurosci Biobehav Rev. 2014 Jul;44:58-75. doi: 10.1016/j.neubiorev.2012.10.003. Epub 2012 Oct 30.
4
Wireless instrumentation system based on dry electrodes for acquiring EEG signals.
Med Eng Phys. 2012 Sep;34(7):972-81. doi: 10.1016/j.medengphy.2011.11.002. Epub 2011 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验