Department of Convergence Security, Kangwon National University, Chuncheon, 24253, Korea.
ZIOVISION, Chuncheon, 24341, Korea.
Sci Rep. 2024 Sep 4;14(1):20572. doi: 10.1038/s41598-024-71072-4.
This study focuses on predicting the prognosis of acute ischemic stroke patients with focal neurologic symptoms using a combination of diffusion-weighted magnetic resonance imaging (DWI) and clinical information. The primary outcome is a poor functional outcome defined by a modified Rankin Scale (mRS) score of 3-6 after 3 months of stroke. Employing nnUnet for DWI lesion segmentation, the study utilizes both multi-task and multi-modality methodologies, integrating DWI and clinical data for prognosis prediction. Integrating the two modalities was shown to improve performance by 0.04 compared to using DWI only. The model achieves notable performance metrics, with a dice score of 0.7375 for lesion segmentation and an area under the curve of 0.8080 for mRS prediction. These results surpass existing scoring systems, showing a 0.16 improvement over the Totaled Health Risks in Vascular Events score. The study further employs grad-class activation maps to identify critical brain regions influencing mRS scores. Analysis of the feature map reveals the efficacy of the multi-tasking nnUnet in predicting poor outcomes, providing insights into the interplay between DWI and clinical data. In conclusion, the integrated approach demonstrates significant advancements in prognosis prediction for cerebral infarction patients, offering a superior alternative to current scoring systems.
本研究旨在通过扩散加权磁共振成像(DWI)与临床信息相结合,预测具有局灶性神经症状的急性缺血性脑卒中患者的预后。主要结局是 3 个月后改良 Rankin 量表(mRS)评分 3-6 的不良功能结局。本研究使用 nnUnet 进行 DWI 病变分割,采用多任务和多模态方法,整合 DWI 和临床数据进行预后预测。与仅使用 DWI 相比,整合两种模态可将性能提高 0.04。该模型的表现指标显著,病变分割的 Dice 评分为 0.7375,mRS 预测的曲线下面积为 0.8080。这些结果优于现有的评分系统,与 Totaled Health Risks in Vascular Events 评分相比提高了 0.16。该研究进一步使用 grad-class 激活图来识别影响 mRS 评分的关键脑区。特征图的分析揭示了 nnUnet 在预测不良结局方面的多任务效能,深入探讨了 DWI 与临床数据之间的相互作用。综上所述,该综合方法在预测脑梗死患者的预后方面取得了显著进展,为当前的评分系统提供了更好的选择。