Suppr超能文献

使用深度学习预测冠状辐射梗死患者的门诊预后。

Prediction of ambulatory outcome in patients with corona radiata infarction using deep learning.

机构信息

Department of Business Administration, School of Business, Yeungnam University, Gyeongsan-si, Republic of Korea.

Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, 317-1, Daemyungdong, Namku, Taegu, 705-717, Republic of Korea.

出版信息

Sci Rep. 2021 Apr 12;11(1):7989. doi: 10.1038/s41598-021-87176-0.

Abstract

Deep learning (DL) is an advanced machine learning approach used in diverse areas such as bioinformatics, image analysis, and natural language processing. Here, using brain magnetic resonance imaging (MRI) data obtained at early stages of infarcts, we attempted to develop a convolutional neural network (CNN) to predict the ambulatory outcome of corona radiata infarction at six months after onset. We retrospectively recruited 221 patients with corona radiata infarcts. A favorable outcome of ambulatory function was defined as a functional ambulation category (FAC) score of ≥ 4 (able to walk without a guardian's assistance), and a poor outcome of ambulatory function was defined as an FAC score of < 4. We used a CNN algorithm. Of the included subjects, 69.7% (n = 154) were assigned randomly to the training set and the remaining 30.3% (n = 67) were assigned to the validation set to measure the model performance. The area under the curve was 0.751 (95% CI 0.649-0.852) for the prediction of ambulatory function with the validation dataset using the CNN model. We demonstrated that a CNN model trained using brain MRIs captured at an early stage after corona radiata infarction could be helpful in predicting long-term ambulatory outcomes.

摘要

深度学习(DL)是一种先进的机器学习方法,广泛应用于生物信息学、图像分析和自然语言处理等领域。在这里,我们使用脑磁共振成像(MRI)数据,尝试在脑冠状辐射梗死发病后早期建立卷积神经网络(CNN),预测 6 个月时的步行功能预后。我们回顾性招募了 221 名脑冠状辐射梗死患者。步行功能的良好预后定义为功能性步行能力分类(FAC)评分≥4 分(能够在没有监护人帮助的情况下行走),步行功能不良预后定义为 FAC 评分<4 分。我们使用了 CNN 算法。在纳入的受试者中,69.7%(n=154)被随机分配到训练集,其余 30.3%(n=67)被分配到验证集,以衡量模型性能。使用 CNN 模型,验证数据集预测步行功能的曲线下面积为 0.751(95%CI 0.649-0.852)。我们证明了使用脑冠状辐射梗死早期 MRI 数据训练的 CNN 模型有助于预测长期步行功能预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d239/8041824/6e1b5d6e0cdc/41598_2021_87176_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验