Chen Feng, Li Xinyin, Bai Min, Zhao Yongxi
Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'An, P. R. China.
Nat Protoc. 2025 Jan;20(1):220-247. doi: 10.1038/s41596-024-01036-5. Epub 2024 Sep 4.
Epigenetic modifications and spatial proximities of nucleic acids and proteins play important roles in regulating physiological processes and disease progression. Currently available cell imaging methods, such as fluorescence in situ hybridization (FISH) and immunofluorescence, struggle to detect low-abundance modifications and their spatial proximities. Here we describe a step-by-step protocol for three DNA-encoded amplifying FISH-based imaging strategies to overcome these challenges for varying applications: base-encoded amplifying FISH (BEA-FISH), pairwise proximity-differentiated amplifying FISH (PPDA-FISH) and cellular macromolecules-tethered DNA walking indexing (Cell-TALKING). They all use the similar core principle of DNA-encoded amplification, which transforms different nonsequence molecular features into unique DNA barcodes for in situ rolling circle amplification and FISH analysis. This involves three key reactions in fixed cell samples: target labeling, DNA encoding and rolling circle amplification imaging. Using this protocol, these three imaging strategies achieve in situ counting of low-abundance modifications alone, the pairwise proximity-differentiated visualization of two modifications and the exploration of multiple modifications around one protein (one-to-many proximity), respectively. Low-abundance modifications, including 5-hydroxymethylcytosine, 5-formylcytosine, 5-hydroxymethyluracil and 5-formyluracil, are clearly visualized in single cells. Various combinatorial patterns of nucleic acid modifications and/or histone modifications are found. The whole protocol takes ~2-4 d to complete, depending on different imaging applications.
核酸和蛋白质的表观遗传修饰以及空间邻近性在调节生理过程和疾病进展中发挥着重要作用。目前可用的细胞成像方法,如荧光原位杂交(FISH)和免疫荧光,难以检测低丰度修饰及其空间邻近性。在此,我们描述了一种基于DNA编码扩增FISH的成像策略的分步方案,以克服这些挑战,适用于不同的应用:碱基编码扩增FISH(BEA-FISH)、成对邻近差异扩增FISH(PPDA-FISH)和细胞大分子拴系DNA步行索引(Cell-TALKING)。它们都采用类似的DNA编码扩增核心原理,即将不同的非序列分子特征转化为独特的DNA条形码,用于原位滚环扩增和FISH分析。这在固定细胞样本中涉及三个关键反应:靶标标记、DNA编码和滚环扩增成像。使用该方案,这三种成像策略分别实现了对低丰度修饰的原位计数、两种修饰的成对邻近差异可视化以及对围绕一种蛋白质的多种修饰的探索(一对多邻近性)。低丰度修饰,包括5-羟甲基胞嘧啶、5-甲酰基胞嘧啶、5-羟甲基尿嘧啶和5-甲酰基尿嘧啶,在单细胞中清晰可见。发现了核酸修饰和/或组蛋白修饰的各种组合模式。整个方案根据不同的成像应用需要约2-4天完成。