Suppr超能文献

基于基因组规模代谢模型的人类疾病研究应用:系统综述。

Applications of genome-scale metabolic models to the study of human diseases: A systematic review.

机构信息

Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia, Catanzaro, 88100, Italy.

Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia, Catanzaro, 88100, Italy.

出版信息

Comput Methods Programs Biomed. 2024 Nov;256:108397. doi: 10.1016/j.cmpb.2024.108397. Epub 2024 Aug 29.

Abstract

BACKGROUND AND OBJECTIVES

Genome-scale metabolic networks (GEMs) represent a valuable modeling and computational tool in the broad field of systems biology. Their ability to integrate constraints and high-throughput biological data enables the study of intricate metabolic aspects and processes of different cell types and conditions. The past decade has witnessed an increasing number and variety of applications of GEMs for the study of human diseases, along with a huge effort aimed at the reconstruction, integration and analysis of a high number of organisms. This paper presents a systematic review of the scientific literature, to pursue several important questions about the application of constraint-based modeling in the investigation of human diseases. Hopefully, this paper will provide a useful reference for researchers interested in the application of modeling and computational tools for the investigation of metabolic-related human diseases.

METHODS

This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Elsevier Scopus®, National Library of Medicine PubMed® and Clarivate Web of Science™ databases were enquired, resulting in 566 scientific articles. After applying exclusion and eligibility criteria, a total of 169 papers were selected and individually examined.

RESULTS

The reviewed papers offer a thorough and up-to-date picture of the latest modeling and computational approaches, based on genome-scale metabolic models, that can be leveraged for the investigation of a large variety of human diseases. The numerous studies have been categorized according to the clinical research area involved in the examined disease. Furthermore, the paper discusses the most typical approaches employed to derive clinically-relevant information using the computational models.

CONCLUSIONS

The number of scientific papers, utilizing GEM-based approaches for the investigation of human diseases, suggests an increasing interest in these types of approaches; hopefully, the present review will represent a useful reference for scientists interested in applying computational modeling approaches to investigate the aetiopathology of human diseases; we also hope that this work will foster the development of novel applications and methods for the discovery of clinically-relevant insights on metabolic-related diseases.

摘要

背景与目的

基因组规模代谢网络(GEM)是系统生物学领域中一种有价值的建模和计算工具。它们能够整合约束条件和高通量生物学数据,从而研究不同细胞类型和条件下复杂的代谢方面和过程。过去十年,基于 GEM 的方法在人类疾病研究中的应用越来越多,同时也进行了大量的工作,旨在重建、整合和分析大量的生物。本文对科学文献进行了系统回顾,旨在探讨几个关于基于约束的建模在人类疾病研究中的应用的重要问题。希望本文能为有兴趣应用建模和计算工具研究与代谢相关的人类疾病的研究人员提供有用的参考。

方法

本系统综述根据系统评价和荟萃分析的首选报告项目(PRISMA)指南进行。查询了爱思唯尔 Scopus®、美国国家医学图书馆 PubMed® 和科睿唯安 Web of Science™数据库,共获得 566 篇科学文章。在应用排除和合格标准后,共选择了 169 篇论文进行单独检查。

结果

综述论文提供了基于基因组规模代谢模型的最新建模和计算方法的全面、最新的图片,可以用于研究多种人类疾病。根据所研究疾病涉及的临床研究领域,对这些研究进行了分类。此外,本文还讨论了使用计算模型从临床相关信息中得出的最典型方法。

结论

利用基于 GEM 的方法研究人类疾病的科学论文数量表明,人们对这类方法的兴趣日益增加;希望本综述将为有兴趣应用计算模型方法研究人类疾病病因发病机制的科学家提供有用的参考;我们还希望这项工作将促进针对代谢相关疾病的具有临床相关性见解的新应用和方法的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验