Suppr超能文献

基于彩色多普勒超声放射组学预测子宫内膜癌淋巴结转移

Prediction of Lymph Node Metastasis in Endometrial Cancer Based on Color Doppler Ultrasound Radiomics.

机构信息

Department of Ultrasound, Beijing Anzhen Nanchong Hospital, Capital Medical University (Nanchong Central Hospital), Nanchong, Sichuan 637000, China.

North Sichuan Medical College, Nanchong 637000 China.

出版信息

Acad Radiol. 2024 Nov;31(11):4499-4508. doi: 10.1016/j.acra.2024.07.056. Epub 2024 Sep 3.

Abstract

RATIONALE AND OBJECTIVES

To construct a model using radiomics features based on ultrasound images and evaluate the feasibility of noninvasive assessment of lymph node status in endometrial cancer (EC) patients.

METHODS

In this multicenter retrospective study, a total of 186 EC patients who underwent hysterectomy and lymph node dissection were included, Pathology confirmed the presence or absence of lymph node metastasis (LNM). The study encompassed patients from seven centers, spanning from September 2018 to November 2023, with 93 patients in each group (with or without LNM). Extracted ultrasound radiomics features from transvaginal ultrasound images, used five machine learning (ML) algorithms to establish US radiomics models, screened clinical features through univariate and multivariate logistic regression to establish a clinical model, and combined clinical and radiomics features to establish a nomogram model. The diagnostic ability of the three models for LNM with EC was compared, and the diagnostic performance and accuracy of the three models were evaluated using receiver operating characteristic curve analysis.

RESULTS

Among the five ML models, the XGBoost model performed the best, with AUC values of 0.900 (95% CI, 0.847-0.950) and 0.865 (95% CI, 0.763-0.950) for the training and testing sets, respectively. In the final model, the nomogram based on clinical features and the ultrasound radiomics showed good resolution, with AUC values of 0.919 (95% CI, 0.874-0.964) and 0.884 (0.801-0.967) in the training and testing sets, respectively. The decision curve analysis verified the clinical practicality of the nomogram.

CONCLUSION

The ML model based on ultrasound radiomics has potential value in the noninvasive differential diagnosis of LNM in patients with EC. The nomogram constructed by combining ultrasound radiomics and clinical features can provide clinical doctors with more comprehensive and personalized image information, which is highly important for selecting treatment strategies.

摘要

背景与目的

基于超声图像构建一个使用放射组学特征的模型,并评估其对子宫内膜癌(EC)患者淋巴结状态进行无创评估的可行性。

方法

本多中心回顾性研究共纳入 186 例行子宫切除术和淋巴结清扫术的 EC 患者,病理证实存在或不存在淋巴结转移(LNM)。该研究涵盖了来自七个中心的患者,时间跨度为 2018 年 9 月至 2023 年 11 月,每组 93 例(有或无 LNM)。从经阴道超声图像中提取放射组学特征,使用五种机器学习(ML)算法建立 US 放射组学模型,通过单变量和多变量逻辑回归筛选临床特征以建立临床模型,并结合临床和放射组学特征建立列线图模型。比较三种模型对 EC 中 LNM 的诊断能力,并通过接受者操作特征曲线分析评估三种模型的诊断性能和准确性。

结果

在五种 ML 模型中,XGBoost 模型表现最佳,训练集和测试集的 AUC 值分别为 0.900(95%CI,0.847-0.950)和 0.865(95%CI,0.763-0.950)。在最终模型中,基于临床特征和超声放射组学的列线图具有良好的分辨率,训练集和测试集的 AUC 值分别为 0.919(95%CI,0.874-0.964)和 0.884(0.801-0.967)。决策曲线分析验证了列线图的临床实用性。

结论

基于超声放射组学的 ML 模型在 EC 患者的 LNM 无创鉴别诊断中具有潜在价值。通过结合超声放射组学和临床特征构建的列线图可为临床医生提供更全面和个性化的图像信息,这对于选择治疗策略非常重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验