Suppr超能文献

创新以社区为驱动的无家可归者普查及需求评估:用于住房和城市发展部规定的即时点数统计的网络抽样方法

Innovating a community-driven enumeration and needs assessment of people experiencing homelessness: a network sampling approach for the HUD-mandated point-in-time count.

作者信息

Almquist Zack W, Kahveci Ihsan, Hazel Mary Ashley, Kajfasz Owen, Rothfolk Janelle, Guilmette Claire, Anderson M C, Ozeryansky Larisa, Hagopian Amy

机构信息

Departments of Sociology and Statistics, University of Washington, Seattle, WA 98195, United States.

Department of Sociology, University of Washington, Seattle, WA 98195, United States.

出版信息

Am J Epidemiol. 2025 Jun 3;194(6):1524-1533. doi: 10.1093/aje/kwae342.

Abstract

To enumerate people experiencing homelessness in the United States, the federal Department of Housing and Urban Development (HUD) mandates its designated local jurisdictions regularly conduct a crude census of this population. This Point-in-Time (PIT) body count, typically conducted on a January night by volunteers with flashlights and clipboards, is often followed by interviews with a separate convenience sample. Here, we propose employing a network-based (peer-referral) respondent-driven sampling (RDS) method to generate a representative sample of unsheltered people, accompanied by a novel method to generate a statistical estimate of the number of unsheltered people in the jurisdiction. First, we develop a power analysis for the sample size of our RDS survey to count unsheltered people experiencing homelessness. Then, we conducted 3 large-scale population-representative samples in King County, WA (Seattle metro) in 2022, 2023, and 2024. We describe the data collection and the application of our new method, comparing the 2020 PIT count (the last visual PIT count performed in King County) to the new method of 2022 and 2024 PIT counts. We conclude with a discussion and future directions. This article is part of a Special Collection on Methods in Social Epidemiology.

摘要

为了统计美国无家可归者的人数,联邦住房和城市发展部(HUD)要求其指定的地方司法管辖区定期对这一人群进行粗略普查。这种即时(PIT)点数统计通常在一月的一个夜晚由手持手电筒和写字板的志愿者进行,之后往往会对一个单独的便利样本进行访谈。在此,我们建议采用基于网络(同伴推荐)的应答驱动抽样(RDS)方法来生成无家可归者的代表性样本,并采用一种新方法对该司法管辖区内无家可归者的数量进行统计估计。首先,我们针对RDS调查的样本量进行了功效分析,以统计无家可归的无家可归者人数。然后,我们于2022年、2023年和2024年在华盛顿州金县(西雅图都会区)进行了3次大规模的具有人口代表性的抽样。我们描述了数据收集过程以及新方法的应用,并将2020年的PIT点数统计(金县最后一次进行的可视化PIT点数统计)与2022年和2024年PIT点数统计的新方法进行了比较。最后我们进行了讨论并提出了未来的方向。本文是社会流行病学方法专题文集的一部分。

相似文献

5
Housing Status and Cancer Screening in US Veterans.美国退伍军人的住房状况与癌症筛查
J Gen Intern Med. 2025 May;40(6):1297-1305. doi: 10.1007/s11606-024-09098-7. Epub 2025 Feb 26.

本文引用的文献

1
On The Robustness Of Respondent-Driven Sampling Estimators To Measurement Error.关于应答驱动抽样估计量对测量误差的稳健性
J Surv Stat Methodol. 2022 Jan 5;10(2):377-396. doi: 10.1093/jssam/smab056. eCollection 2022 Apr.
5
Estimating uncertainty in respondent-driven sampling using a tree bootstrap method.使用树状自举法估计应答者驱动抽样中的不确定性。
Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14668-14673. doi: 10.1073/pnas.1617258113. Epub 2016 Dec 7.
6
Diagnostics for Respondent-driven Sampling.应答驱动抽样的诊断方法。
J R Stat Soc Ser A Stat Soc. 2015 Jan;178(1):241-269. doi: 10.1111/rssa.12059. Epub 2014 May 1.
9
Respondent-Driven Sampling: An Assessment of Current Methodology.应答者驱动抽样:当前方法评估
Sociol Methodol. 2010 Aug;40(1):285-327. doi: 10.1111/j.1467-9531.2010.01223.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验