Suppr超能文献

多模态和多模型对大规模功能脑网络的研究。

Multi-modal and multi-model interrogation of large-scale functional brain networks.

机构信息

Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom.

Eodyne Systems SL, Barcelona, Spain; Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.

出版信息

Neuroimage. 2023 Aug 15;277:120236. doi: 10.1016/j.neuroimage.2023.120236. Epub 2023 Jun 22.

Abstract

Existing whole-brain models are generally tailored to the modelling of a particular data modality (e.g., fMRI or MEG/EEG). We propose that despite the differing aspects of neural activity each modality captures, they originate from shared network dynamics. Building on the universal principles of self-organising delay-coupled nonlinear systems, we aim to link distinct features of brain activity - captured across modalities - to the dynamics unfolding on a macroscopic structural connectome. To jointly predict connectivity, spatiotemporal and transient features of distinct signal modalities, we consider two large-scale models - the Stuart Landau and Wilson and Cowan models - which generate short-lived 40 Hz oscillations with varying levels of realism. To this end, we measure features of functional connectivity and metastable oscillatory modes (MOMs) in fMRI and MEG signals - and compare them against simulated data. We show that both models can represent MEG functional connectivity (FC), functional connectivity dynamics (FCD) and generate MOMs to a comparable degree. This is achieved by adjusting the global coupling and mean conduction time delay and, in the WC model, through the inclusion of balance between excitation and inhibition. For both models, the omission of delays dramatically decreased the performance. For fMRI, the SL model performed worse for FCD and MOMs, highlighting the importance of balanced dynamics for the emergence of spatiotemporal and transient patterns of ultra-slow dynamics. Notably, optimal working points varied across modalities and no model was able to achieve a correlation with empirical FC higher than 0.4 across modalities for the same set of parameters. Nonetheless, both displayed the emergence of FC patterns that extended beyond the constraints of the anatomical structure. Finally, we show that both models can generate MOMs with empirical-like properties such as size (number of brain regions engaging in a mode) and duration (continuous time interval during which a mode appears). Our results demonstrate the emergence of static and dynamic properties of neural activity at different timescales from networks of delay-coupled oscillators at 40 Hz. Given the higher dependence of simulated FC on the underlying structural connectivity, we suggest that mesoscale heterogeneities in neural circuitry may be critical for the emergence of parallel cross-modal functional networks and should be accounted for in future modelling endeavours.

摘要

现有的全脑模型通常针对特定的数据模态(例如 fMRI 或 MEG/EEG)进行定制。我们提出,尽管每种模态都捕捉到了神经活动的不同方面,但它们都源自共享的网络动力学。基于自组织延迟耦合非线性系统的普遍原理,我们旨在将不同模态中捕获到的大脑活动的不同特征与宏观结构连接组上展开的动力学联系起来。为了联合预测不同信号模态的连通性、时空和瞬态特征,我们考虑了两个大规模模型——Stuart Landau 和 Wilson 和 Cowan 模型——它们生成具有不同逼真度的短暂 40 Hz 振荡。为此,我们测量了 fMRI 和 MEG 信号中的功能连接和亚稳态振荡模式(MOM)的特征,并将其与模拟数据进行比较。我们表明,这两个模型都可以表示 MEG 功能连接(FC)、功能连接动力学(FCD)并生成具有可比程度的 MOM。这是通过调整全局耦合和平均传导时间延迟来实现的,在 WC 模型中,通过在兴奋和抑制之间实现平衡来实现。对于这两个模型,省略延迟会极大地降低性能。对于 fMRI,SL 模型在 FCD 和 MOM 方面表现较差,这突出了平衡动力学对于超慢动态时空和瞬态模式的出现的重要性。值得注意的是,最优工作点在不同模态之间变化,并且没有一个模型能够在同一组参数下在相同模态之间实现与经验性 FC 相关系数高于 0.4。尽管如此,这两个模型都显示出了超出解剖结构限制的 FC 模式的出现。最后,我们表明,这两个模型都可以生成具有经验性特征的 MOM,例如大小(参与模式的脑区数量)和持续时间(模式出现的连续时间间隔)。我们的结果表明,在 40 Hz 的延迟耦合振荡器网络中,不同时间尺度的神经网络活动的静态和动态特性开始出现。鉴于模拟 FC 对基础结构连接的更高依赖性,我们认为神经电路的中尺度异质性对于跨模态功能网络的并行出现可能至关重要,并且应该在未来的建模工作中加以考虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ee9/10958139/19221435c381/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验