Suppr超能文献

介观连接组的空间组织:影响网络动力学同步和亚稳定性的特征。

Spatial organisation of the mesoscale connectome: A feature influencing synchrony and metastability of network dynamics.

机构信息

Newcastle University, School of Computing, Newcastle upon Tyne, United Kingdom.

East China Normal University, School of Physics and Electronic Science, Shanghai, China.

出版信息

PLoS Comput Biol. 2023 Aug 8;19(8):e1011349. doi: 10.1371/journal.pcbi.1011349. eCollection 2023 Aug.

Abstract

Significant research has investigated synchronisation in brain networks, but the bulk of this work has explored the contribution of brain networks at the macroscale. Here we explore the effects of changing network topology on functional dynamics in spatially constrained random networks representing mesoscale neocortex. We use the Kuramoto model to simulate network dynamics and explore synchronisation and critical dynamics of the system as a function of topology in randomly generated networks with a distance-related wiring probability and no preferential attachment term. We show networks which predominantly make short-distance connections smooth out the critical coupling point and show much greater metastability, resulting in a wider range of coupling strengths demonstrating critical dynamics and metastability. We show the emergence of cluster synchronisation in these geometrically-constrained networks with functional organisation occurring along structural connections that minimise the participation coefficient of the cluster. We show that these cohorts of internally synchronised nodes also behave en masse as weakly coupled nodes and show intra-cluster desynchronisation and resynchronisation events related to inter-cluster interaction. While cluster synchronisation appears crucial to healthy brain function, it may also be pathological if it leads to unbreakable local synchronisation which may happen at extreme topologies, with implications for epilepsy research, wider brain function and other domains such as social networks.

摘要

大量研究已经探讨了脑网络中的同步现象,但其中大部分工作都在探索宏观尺度上的脑网络的贡献。在这里,我们探索了改变网络拓扑结构对代表中尺度新皮层的空间受限随机网络中的功能动力学的影响。我们使用 Kuramoto 模型来模拟网络动态,并研究了作为随机生成网络拓扑函数的同步和系统的临界动力学,这些网络具有与距离相关的布线概率,没有优先附着项。我们表明,主要形成短距离连接的网络使临界耦合点平滑化,并表现出更大的亚稳性,从而导致更广泛的耦合强度表现出临界动力学和亚稳性。我们表明,在这些具有功能组织的几何约束网络中出现了簇同步,功能组织沿着最小化簇参与系数的结构连接发生。我们表明,这些内部同步节点的集群也表现为弱耦合节点的集体行为,并显示出与集群间相互作用相关的簇内去同步和再同步事件。虽然簇同步似乎对健康的大脑功能至关重要,但如果它导致不可打破的局部同步,也可能是病理性的,这种情况可能发生在极端拓扑中,这对癫痫研究、更广泛的大脑功能和其他领域(如社交网络)有影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7163/10437862/4759b12ceed1/pcbi.1011349.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验