Hebbar P Archana, Vinod Sanjana, Shah Aumkar Kishore, Pashilkar Abhay A, Biswas Pradipta
CSIR-National Aerospace Laboratories Bengaluru, Karnataka, India.
Indian Institute of Science (IISc), Bengaluru, Karnataka, India.
J Eye Mov Res. 2023 Jul 5;15(3). doi: 10.16910/jemr.15.3.11. eCollection 2022.
This paper discusses the design and development of a low-cost virtual reality (VR) based flight simulator with cognitive load estimation feature using ocular and EEG signals. Focus is on exploring methods to evaluate pilot's interactions with aircraft by means of quantifying pilot's perceived cognitive load under different task scenarios. Realistic target tracking and context of the battlefield is designed in VR. Head mounted eye gaze tracker and EEG headset are used for acquiring pupil diameter, gaze fixation, gaze direction and EEG theta, alpha, and beta band power data in real time. We developed an AI agent model in VR and created scenarios of interactions with the piloted aircraft. To estimate the pilot's cognitive load, we used low-frequency pupil diameter variations, fixation rate, gaze distribution pattern, EEG signal-based task load index and EEG task engagement index. We compared the physiological measures of workload with the standard user's inceptor control-based workload metrics. Results of the piloted simulation study indicate that the metrics discussed in the paper have strong association with pilot's perceived task difficulty.
本文讨论了一种基于低成本虚拟现实(VR)的飞行模拟器的设计与开发,该模拟器具有利用眼部和脑电图信号进行认知负荷估计的功能。重点在于探索通过量化飞行员在不同任务场景下感知到的认知负荷来评估飞行员与飞机交互的方法。在VR中设计了逼真的目标跟踪和战场情境。头戴式眼动追踪器和脑电图耳机用于实时获取瞳孔直径、注视固定、注视方向以及脑电图θ、α和β波段功率数据。我们在VR中开发了一个人工智能代理模型,并创建了与有人驾驶飞机的交互场景。为了估计飞行员的认知负荷,我们使用了低频瞳孔直径变化、注视率、注视分布模式、基于脑电图信号的任务负荷指数和脑电图任务参与指数。我们将工作量的生理测量指标与基于标准用户感受器控制的工作量指标进行了比较。有人驾驶模拟研究的结果表明,本文讨论的指标与飞行员感知到的任务难度有很强的关联。