Suppr超能文献

基于认知任务负荷动态模式识别的自适应人机系统设计

Design of an Adaptive Human-Machine System Based on Dynamical Pattern Recognition of Cognitive Task-Load.

作者信息

Zhang Jianhua, Yin Zhong, Wang Rubin

机构信息

Intelligent Systems Group, School of Information Science and Engineering, East China University of Science and Technology Shanghai, China.

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai, China.

出版信息

Front Neurosci. 2017 Mar 17;11:129. doi: 10.3389/fnins.2017.00129. eCollection 2017.

Abstract

This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed.

摘要

本文开发了一种认知任务负荷(CTL)分类算法和分配策略,以便在安全关键型人机集成系统中随时间维持最佳操作员CTL水平。基于非线性动态CTL分类器设计了一种自适应人机系统,该分类器将一组与脑电图(EEG)和心电图(ECG)相关的特征映射到几个CTL类别。最小二乘支持向量机(LSSVM)用作动态模式分类器。在模拟过程控制任务环境下,对7名志愿者参与者进行了一系列电生理和性能数据采集实验。构建了参与者特定的动态LSSVM模型,以便在每个时刻将瞬时CTL分类为五个类别。通过使用局部保留投影(LPP)技术,将包含56个与EEG和ECG相关特征的初始特征集缩减为一组12个显著特征(包括11个与EEG相关的特征)。对于5类CTL分类问题,实现了约80%的总体正确分类率。然后,将预测的CTL用于在操作员和基于计算机的控制器之间自适应分配过程控制任务的数量。仿真结果表明,使用所提出的自适应自动化策略可以提高人机系统的整体性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/414d/5355710/92f26278e495/fnins-11-00129-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验