Hosseini Saman, Sharifi Rouhallah, Habibi Alireza, Ali Qurban
Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran.
Front Microbiol. 2024 Aug 20;15:1459112. doi: 10.3389/fmicb.2024.1459112. eCollection 2024.
The ability to produce biosurfactants plays a meaningful role in the bioavailability of crude oil hydrocarbons and the bioremediation efficiency of crude oil-degrading bacteria. This study aimed to characterize the produced biosurfactants by during the biodegradation of crude oil hydrocarbons.
The biosurfactants were isolated and then characterized by Fourier transform infrared (FTIR), liquid chromatography-mass-spectrometry (LC-MS), and nuclear magnetic resonance spectroscopy (NMR) analyses.
The FTIR results revealed the existence of hydroxyl, carboxyl, and methoxyl groups in the isolated biosurfactants. Also, the LC-MS analysis demonstrated a main di-rhamnolipid (l-rhamnopyranosyll-rhamnopyranosyl-3-hydroxydecanoyl-3-hydroxydecanoate, Rha-Rha-C10-C10) along with a mono-rhamnolipid (l-rhamnopyranosyl-b-hydroxydecanoylb-hydroxydecanoate, Rha-C10-C10). In agreement with these findings, the NMR analysis confirmed the aromatic, carboxylic, methyl, sulfate moieties, and hexose sugar in the biosurfactants. The emulsion capacity of the biosurfactants decreased the surface tension of the aqueous system from 73.4 mN m to around 33 mN m at 200 mg L as the critical micelle concentration. The emulsification capacity of the biosurfactants in the formation of a stable microemulsion for the diesel-water system at a wide range of pH (2-12), temperature (0-80°C), and salinity (2-20 g L of NaCl) showed their potential use in oil recovery and bioremediation through the use of microbial enhancement.
This work showed the ability of NC392 cells to produce rhamnolipid molecules during the biodegradation process of crude oil hydrocarbons. These biosurfactants have potential in bioremediation studies as eco-friendly and biodegradable products, and their stability makes them optimal for areas with extreme conditions.
产生生物表面活性剂的能力在原油碳氢化合物的生物可利用性以及原油降解细菌的生物修复效率方面发挥着重要作用。本研究旨在表征原油碳氢化合物生物降解过程中产生的生物表面活性剂。
分离生物表面活性剂,然后通过傅里叶变换红外光谱(FTIR)、液相色谱 - 质谱联用(LC - MS)和核磁共振光谱(NMR)分析对其进行表征。
FTIR结果显示分离出的生物表面活性剂中存在羟基、羧基和甲氧基。此外,LC - MS分析表明主要的二鼠李糖脂(1 - 鼠李吡喃糖基 - 1 - 鼠李吡喃糖基 - 3 - 羟基癸酰基 - 3 - 羟基癸酸酯,Rha - Rha - C10 - C10)以及单鼠李糖脂(1 - 鼠李吡喃糖基 - β - 羟基癸酰基 - β - 羟基癸酸酯,Rha - C10 - C10)。与这些发现一致,NMR分析证实了生物表面活性剂中的芳香族、羧基、甲基、硫酸根部分以及己糖。生物表面活性剂的乳化能力在200 mg/L作为临界胶束浓度时,将水体系的表面张力从73.4 mN/m降低到约33 mN/m。生物表面活性剂在广泛的pH值(2 - 12)、温度(0 - 80°C)和盐度(2 - 20 g/L的NaCl)下形成柴油 - 水体系稳定微乳液的乳化能力表明它们在通过微生物强化进行石油采收和生物修复中的潜在用途。
这项工作表明NC392细胞在原油碳氢化合物生物降解过程中产生鼠李糖脂分子的能力。这些生物表面活性剂作为环保且可生物降解的产品在生物修复研究中具有潜力,并且它们的稳定性使其成为极端条件地区的理想选择。