Suppr超能文献

电微生物浓差电池是一种被忽视的地下微生物潜在节能机制。

Electromicrobiological concentration cells are an overlooked potential energy conservation mechanism for subsurface microorganisms.

作者信息

Marshall Ian P G

机构信息

Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark.

出版信息

Front Microbiol. 2024 Aug 21;15:1407868. doi: 10.3389/fmicb.2024.1407868. eCollection 2024.

Abstract

Thermodynamics has predicted many different kinds of microbial metabolism by determining which pairs of electron acceptors and donors will react to produce an exergonic reaction (a negative net change in Gibbs free energy). In energy-limited environments, such as the deep subsurface, such an approach can reveal the potential for unexpected or counter-intuitive energy sources for microbial metabolism. Up until recently, these thermodynamic calculations have been carried out with the assumption that chemical species appearing on the reactant and product side of a reaction formula have a constant concentration, and thus do not count towards net concentration changes and the overall direction of the reaction. This assumption is reasonable considering microorganisms are too small (~1 μm) for any significant differences in concentration to overcome diffusion. However, recent discoveries have demonstrated that the reductive and oxidative halves of reactions can be separated by much larger distances, from millimetres to centimetres via conductive filamentous bacteria, mineral conductivity, and biofilm conductivity. This means that the concentrations of reactants and products can indeed be different, and that concentration differences can contribute to the net negative change in Gibbs free energy. It even means that the same redox reaction, simultaneously running in forward and reverse, can drive energy conservation, in an ElectroMicrobiological Concentration Cell (EMCC). This paper presents a model to investigate this phenomenon and predict under which circumstances such concentration-driven metabolism might take place. The specific cases of oxygen concentration cells, sulfide concentration cells, and hydrogen concentration cells are examined in more detail.

摘要

热力学通过确定哪些电子受体和供体对会发生反应以产生放能反应(吉布斯自由能的负净变化),预测了许多不同类型的微生物代谢。在能量有限的环境中,比如深层地下环境,这种方法可以揭示微生物代谢中意外或违反直觉的能量来源的可能性。直到最近,这些热力学计算都是在这样的假设下进行的:反应式反应物和产物一侧出现的化学物质具有恒定浓度,因此不计入净浓度变化和反应的总体方向。考虑到微生物太小(约1微米),浓度的任何显著差异都无法克服扩散,这个假设是合理的。然而,最近的发现表明,反应的还原和氧化部分可以被更大的距离分隔开,从毫米到厘米,通过导电丝状细菌、矿物导电性和生物膜导电性。这意味着反应物和产物的浓度确实可能不同,而且浓度差异可能导致吉布斯自由能的净负变化。这甚至意味着,在一个电微生物浓缩电池(EMCC)中,同时正向和反向运行的相同氧化还原反应可以驱动能量守恒。本文提出了一个模型来研究这种现象,并预测在哪些情况下可能会发生这种浓度驱动的代谢。对氧浓缩电池、硫化物浓缩电池和氢浓缩电池的具体情况进行了更详细的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24a4/11371792/6ec7ad0b429e/fmicb-15-1407868-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验