Hao Yaxin, Liu Xin, Zhang Yaoling, Zhang Xin, Li Zhan, Chen Ximeng
MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China.
School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China.
Adv Sci (Weinh). 2024 Nov;11(41):e2406535. doi: 10.1002/advs.202406535. Epub 2024 Sep 5.
The extraction of lithium (Li) from complex brines presents significant challenges due to the interference of competing ions, particularly magnesium (Mg⁺), which complicates the selective separation process. Herein, a strategy is introduced employing charge-lock enhanced 2D heterogeneous channels for the rapid and selective uptake of Li⁺. This approach integrates porous ZnFeO/ZnO nanosheets into Ag-modulated sub-nanometer interlayer channels, forming channels optimized for Li⁺ extraction. The novelty lies in the charge-lock mechanism, which selectively captures Mg⁺ ions, thereby facilitating the effective separation of Li from Mg. This mechanism is driven by a charge transfer during the formation of ZnFeO/ZnO, rendering O atoms in Fe-O bonds more negatively charged. These negative charges strongly interact with the high charge density of Mg⁺ ions, enabling the charge-locking mechanism and the targeted capture of Mg⁺. Optimization with Ag⁺ further improves interlayer spacing, increasing ion transport rates and addressing the swelling issue typical of 2D membranes. The resultant membrane showcases high water flux (44.37 L m⁻ h⁻¹ bar⁻¹) and an impressive 99.8% rejection of Mg⁺ in real brine conditions, achieving a Li⁺/Mg⁺ selectivity of 59.3, surpassing existing brine separation membranes. Additionally, this membrane demonstrates superior cyclic stability, highlighting its high potential for industrial applications.
从复杂卤水中提取锂(Li)面临着巨大挑战,因为竞争性离子的干扰,特别是镁(Mg⁺),这使得选择性分离过程变得复杂。在此,引入了一种策略,采用电荷锁定增强的二维异质通道来快速、选择性地摄取Li⁺。该方法将多孔ZnFeO/ZnO纳米片整合到银调制的亚纳米层间通道中,形成了针对Li⁺提取优化的通道。其新颖之处在于电荷锁定机制,该机制选择性地捕获Mg⁺离子,从而促进Li与Mg的有效分离。这种机制是由ZnFeO/ZnO形成过程中的电荷转移驱动的,使Fe-O键中的O原子带更多负电荷。这些负电荷与Mg⁺离子的高电荷密度强烈相互作用,实现电荷锁定机制并靶向捕获Mg⁺。用Ag⁺进行优化进一步改善了层间距,提高了离子传输速率,并解决了二维膜典型的溶胀问题。所得膜在实际卤水条件下展现出高水通量(44.37 L m⁻² h⁻¹ bar⁻¹)和令人印象深刻的99.8%的Mg⁺截留率,Li⁺/Mg⁺选择性达到59.3,超过了现有的卤水分离膜。此外,该膜还表现出优异的循环稳定性,凸显了其在工业应用中的巨大潜力。