Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
J Am Chem Soc. 2024 Sep 18;146(37):25422-25425. doi: 10.1021/jacs.4c08387. Epub 2024 Sep 5.
Self-assembly of biomolecules provides a powerful tool for a wide range of applications in nanomedicine, biosensing and imaging, vaccines, computation, nanophotonics, etc. The key is to rationally design building blocks and the intermolecule interactions. Along this line, structural DNA nanotechnology has rapidly developed by limiting DNA secondary structures to primarily well-established, B-form DNA duplexes, which can be readily and reliably predicted. As the field evolves, more sophisticated structural elements must be introduced. While increasing the structural complexity, they bring challenges to predicting DNA nanostructures. In the past, a brutal and tedious error-and-trial approach has often been used to solve this problem. Here, we report a case study of applying AlphaFold 3 to model the structural elements to facilitate DNA nanostructure design. This protocol is expected to be generally applicable and greatly facilitates the further development of structural DNA nanotechnology.
生物分子的自组装为纳米医学、生物传感和成像、疫苗、计算、纳米光子学等广泛应用领域提供了强大的工具。关键是要合理设计构建块和分子间相互作用。沿着这条线,结构 DNA 纳米技术通过将 DNA 二级结构限制为主要的已建立的 B 型 DNA 双链体来快速发展,这些双链体可以很容易且可靠地预测。随着该领域的发展,必须引入更复杂的结构元件。在增加结构复杂性的同时,它们给 DNA 纳米结构的预测带来了挑战。过去,人们经常使用一种残酷而繁琐的错误-试验方法来解决这个问题。在这里,我们报告了一个应用 AlphaFold 3 对结构元件进行建模以促进 DNA 纳米结构设计的案例研究。该方案预计具有普遍适用性,并极大地促进了结构 DNA 纳米技术的进一步发展。