Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America. Current institution: Gundersen Health System, La Crosse, WI 54601, United States of America.
Phys Med Biol. 2019 May 31;64(11):115019. doi: 10.1088/1361-6560/ab1c34.
Photon counting detectors (PCD) can provide spectral information to enable iodine quantification through multi-energy imaging but performance is limited by current PCD technology. The purpose of this work is to evaluate iodine quantification in a phantom study using dual-source PCD-CT (DS-PCD-CT), and compare to single-source (SS)-PCD-CT and traditional DS energy integrating detector (EID)-based dual-energy CT. A multi-energy CT phantom with iodine inserts (0 to 15 mg ml concentration) was imaged on a research SS-PCD-CT scanner (CTDI = 18 mGy). A DS-PCD-CT was emulated by acquiring two sequential scans (CTDI = 9 mGy each) using tube potentials: 140 kVp/80 kVp, 140 kVp/100 kVp and 140 kVp/120 kVp. For each kVp, 1 or 2 energy bins were reconstructed to achieve either dual-energy or quadruple energy CT. In addition to these energy combinations, a Sn filter was used for the high tube potential (140 kVp) of each kVp pair. For comparison, the same phantom was also scanned on a commercially available DS-EID-CT with matched radiation dose (CTDI = 18 mGy). Material decomposition was performed in image space using a standard least-squares based approach to generate iodine and water-specific images. The root-mean-square-error (RMSE) measured over each insert from the iodine image was used to determine iodine accuracy. The iodine RMSE from SS-PCD (140 kVp with 2 energy bins) was 2.72 mg ml. The use of a DS configuration with 1 energy bin per kVp (140 kVp/80 kVp) resulted in a RMSE of 2.29 mg ml. Two energy bins per kVp further reduced iodine RMSE to 1.83 mg ml. The addition of a Sn filter to the latter quadruple energy mode reduced RMSE to 1.48 mg ml. RMSE for DS-PCD-CT (2 energy bins per kVp) decreased by 1.3% (Sn140 kVp/80 kVp) and 15% (Sn140 kVp/100 kVp) as compared to DS-EID-CT. DS-PCD-CT with a Sn filter improved iodine quantification as compared to both SS-PCD-CT and DS-EID-CT.
光子计数探测器 (PCD) 可提供光谱信息,通过多能量成像实现碘定量,但性能受到当前 PCD 技术的限制。本研究旨在通过双源 PCD-CT(DS-PCD-CT)评估体模研究中的碘定量,并与单源(SS)-PCD-CT 和传统双能能量积分探测器(EID)-基于双能 CT 进行比较。在研究 SS-PCD-CT 扫描仪(CTDI = 18 mGy)上对具有碘插入物(0 至 15 mg ml 浓度)的多能量 CT 体模进行成像。通过使用管电压采集两次连续扫描(每次 CTDI = 9 mGy)来模拟 DS-PCD-CT:140 kVp/80 kVp、140 kVp/100 kVp 和 140 kVp/120 kVp。对于每个 kVp,重建 1 或 2 个能量-bin 以实现双能或四重能 CT。除了这些能量组合之外,还为每个 kVp 对的高管电压(140 kVp)使用 Sn 滤波器。为了进行比较,还使用相同的辐射剂量(CTDI = 18 mGy)在市售的 DS-EID-CT 上对相同的体模进行了扫描。在图像空间中使用基于标准最小二乘的方法进行材料分解,以生成碘和水特异性图像。从碘图像中测量每个插入物的均方根误差 (RMSE) 用于确定碘的准确性。SS-PCD(140 kVp 带 2 个能量-bin)的碘 RMSE 为 2.72 mg ml。在每个 kVp 使用 1 个能量-bin 的 DS 配置(140 kVp/80 kVp)导致 RMSE 为 2.29 mg ml。每个 kVp 两个能量-bin 进一步将碘 RMSE 降低至 1.83 mg ml。将 Sn 滤波器添加到后者的四重能量模式将 RMSE 降低至 1.48 mg ml。与 DS-EID-CT 相比,DS-PCD-CT(每个 kVp 两个能量-bin)的 RMSE 降低了 1.3%(Sn140 kVp/80 kVp)和 15%(Sn140 kVp/100 kVp)。与 SS-PCD-CT 和 DS-EID-CT 相比,带 Sn 滤波器的 DS-PCD-CT 改善了碘定量。