Suppr超能文献

用于从基因表达数据中探究代谢差异的基因组规模差异通量分析方案。

Protocol for genome-scale differential flux analysis to interrogate metabolic differences from gene expression data.

机构信息

Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.

School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.

出版信息

STAR Protoc. 2024 Sep 20;5(3):103291. doi: 10.1016/j.xpro.2024.103291. Epub 2024 Sep 4.

Abstract

Deciphering the functional differences between diseased and healthy cells requires understanding the alterations in biochemical flux patterns. We present a genome-scale differential flux analysis (GS-DFA) protocol to elucidate these metabolic disparities by integrating condition-specific gene expression data into the human genome-scale metabolic model (humanGEM). In this protocol, we describe the steps to normalize and integrate data into the humanGEM and analyze differential flux across the biochemical network between diseased and healthy cells. For complete details on the use and execution of this protocol, please refer to Nanda et al..

摘要

解析病变细胞和健康细胞之间的功能差异需要了解生化流量模式的改变。我们提出了一种基于基因组规模的差异通量分析(GS-DFA)方案,通过将特定条件下的基因表达数据整合到人类基因组规模代谢模型(humanGEM)中,阐明这些代谢差异。在本方案中,我们将描述将数据标准化并整合到 humanGEM 中的步骤,并分析病变细胞和健康细胞之间生化网络的差异通量。有关此方案的使用和执行的完整详细信息,请参阅 Nanda 等人的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dd9/11404131/7d422d5050a7/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验