Zheng Yu, Lu Jiwen, Duan Yueqi, Zhou Jie
IEEE Trans Image Process. 2024;33:4867-4881. doi: 10.1109/TIP.2024.3451940. Epub 2024 Sep 11.
In this paper, we propose an effective plug-and-play module called structural relation network (SRN) to model structural dependencies in 3D point clouds for feature representation. Existing network architectures such as PointNet++ and RS-CNN capture local structures individually and ignore the inner interactions between different sub-clouds. Motivated by the fact that structural relation modeling plays critical roles for humans to understand 3D objects, our SRN exploits local information by modeling structural relations in 3D spaces. For a given sub-cloud of point sets, SRN firstly extracts its geometrical and locational relations with the other sub-clouds and maps them into the embedding space, then aggregates both relational features with the other sub-clouds. As the variation of semantics embedded in different sub-clouds is ignored by SRN, we further extend SRN to enable dynamic message passing between different sub-clouds. We propose a graph-based structural relation network (GSRN) where sub-clouds and their pairwise relations are modeled as nodes and edges respectively, so that the node features are updated by the messages along the edges. Since the node features might not be well preserved when acquiring the global representation, we propose a Combined Entropy Readout (CER) function to adaptively aggregate them into the holistic representation, so that GSRN simultaneously models the local-local and local-global region-wise interaction. The proposed SRN and GSRN modules are simple, interpretable, and do not require any additional supervision signals, which can be easily equipped with the existing networks. Experimental results on the benchmark datasets (ScanObjectNN, ModelNet40, ShapeNet Part, S3DIS, ScanNet and SUN-RGBD) indicate promising boosts on the tasks of 3D point cloud classification, segmentation and object detection.
在本文中,我们提出了一种有效的即插即用模块——结构关系网络(SRN),用于对三维点云中的结构依赖性进行建模以实现特征表示。现有的网络架构,如PointNet++和RS-CNN,分别捕捉局部结构,而忽略了不同子云之间的内部交互。鉴于结构关系建模对人类理解三维物体起着关键作用,我们的SRN通过在三维空间中对结构关系进行建模来利用局部信息。对于给定的点集子云,SRN首先提取其与其他子云的几何和位置关系,并将它们映射到嵌入空间中,然后将这些关系特征与其他子云进行聚合。由于SRN忽略了嵌入在不同子云中语义的变化,我们进一步扩展SRN以实现不同子云之间的动态消息传递。我们提出了一种基于图的结构关系网络(GSRN),其中子云和它们的成对关系分别被建模为节点和边,这样节点特征就可以通过沿边的消息进行更新。由于在获取全局表示时节点特征可能无法得到很好的保留,我们提出了一种组合熵读出(CER)函数,以自适应地将它们聚合为整体表示,从而使GSRN能够同时对局部-局部和局部-全局区域间的交互进行建模。所提出的SRN和GSRN模块简单、可解释,并且不需要任何额外的监督信号,可以很容易地与现有网络相结合。在基准数据集(ScanObjectNN、ModelNet40、ShapeNet Part、S3DIS、ScanNet和SUN-RGBD)上的实验结果表明,在三维点云分类、分割和目标检测任务上有显著的提升。