Suppr超能文献

使用 EEG 信号对单侧肢体进行多类运动想象解码。

Decoding Multi-Class Motor Imagery From Unilateral Limbs Using EEG Signals.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:3399-3409. doi: 10.1109/TNSRE.2024.3454088. Epub 2024 Sep 17.

Abstract

The EEG is a widely utilized neural signal source, particularly in motor imagery-based brain-computer interface (MI-BCI), offering distinct advantages in applications like stroke rehabilitation. Current research predominantly concentrates on the bilateral limbs paradigm and decoding, but the use scenarios for stroke rehabilitation are typically for unilateral upper limbs. There is a significant challenge to decoding unilateral MI of multitasks due to the overlapped spatial neural activities of the tasks. This study aims to formulate a novel MI-BCI experimental paradigm for unilateral limbs with multitasks. The paradigm encompasses four imagined movement directions: top-bottom, left-right, top right-bottom left, and top left-bottom right. Forty-six healthy subjects participated in this experiment. Commonly used machine learning techniques, such as FBCSP, EEGNet, deepConvNet, and FBCNet, were employed for evaluation. To improve decoding accuracy, we propose an MVCA method that introduces temporal convolution and attention mechanism to effectively capture temporal features from multiple perspectives. With the MVCA model, we have achieved 40.6% and 64.89% classification accuracies for the four-class and two-class scenarios (top right-bottom left and top left-bottom right), respectively. Conclusion: This is the first study demonstrating that motor imagery of multiple directions in unilateral limbs can be decoded. In particular, decoding two directions, right top to left bottom and left top to right bottom, provides the best accuracy, which sheds light on future studies. This study advances the development of the MI-BCI paradigm, offering preliminary evidence for the feasibility of decoding multiple directional information from EEG. This, in turn, enhances the dimensions of MI control commands.

摘要

脑电图是一种广泛应用的神经信号源,特别是在基于运动想象的脑机接口(MI-BCI)中,在中风康复等应用中具有明显优势。目前的研究主要集中在双侧肢体范式和解码上,但中风康复的应用场景通常是单侧上肢。由于任务的空间神经活动重叠,对多任务的单侧 MI 进行解码存在重大挑战。本研究旨在为单侧肢体多任务制定一种新的 MI-BCI 实验范式。该范式包含四个想象的运动方向:上下、左右、右上-左下和左上-右下。46 名健康受试者参与了这项实验。常用的机器学习技术,如 FBCSP、EEGNet、deepConvNet 和 FBCNet,用于评估。为了提高解码精度,我们提出了一种 MVCA 方法,该方法引入了时间卷积和注意力机制,从多个角度有效地捕获时间特征。使用 MVCA 模型,我们分别实现了 40.6%和 64.89%的四类和两类场景(右上-左下和左上-右下)的分类准确率。结论:这是第一项证明可以对单侧肢体的多方向运动想象进行解码的研究。特别是,解码两个方向,即右上到左下和左上到右下,提供了最佳的准确性,这为未来的研究提供了线索。这项研究推进了 MI-BCI 范式的发展,为从 EEG 解码多方向信息的可行性提供了初步证据。这反过来又增强了 MI 控制命令的维度。

相似文献

1
Decoding Multi-Class Motor Imagery From Unilateral Limbs Using EEG Signals.使用 EEG 信号对单侧肢体进行多类运动想象解码。
IEEE Trans Neural Syst Rehabil Eng. 2024;32:3399-3409. doi: 10.1109/TNSRE.2024.3454088. Epub 2024 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验