Department of Electrical Engineering, Indian Institute of Technology Palakkad, Palakkad, India.
Infocomm Technology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore.
J Neural Eng. 2022 Sep 6;19(5). doi: 10.1088/1741-2552/ac8501.
Research on the decoding of brain signals to control external devices is rapidly emerging due to its versatile potential applications, including neuroprosthetic control and neurorehabilitation. Electroencephalogram (EEG)-based non-invasive brain-computer interface (BCI) systems decode brain signals to establish an augmented communication and control pathway between the brain and the computer. The development of an efficient BCI system requires accurate decoding of neural activity underlying the user's intentions. This study investigates the directional tuning of EEG characteristics from the posterior parietal region, associated with bidirectional hand movement imagination or motor imagery (MI) in left and right directions.. The imagined movement directions of the chosen hand were decoded using a combination of envelope and phase features derived from parietal EEGs of both hemispheres. The proposed algorithm uses wavelets for spectral decomposition, and discriminative subject-specific subband levels are identified based on Fisher analysis of envelope and phase features. The selected features from the discriminative subband levels are used to classify left and right MI directions of the hand using a support vector machine classifier. Furthermore, the performance of the proposed algorithm is evaluated by incorporating a maximum-variance-based EEG time bin selection algorithm.With the time bin selection approach using subject-specific features, the proposed algorithm yielded an average left vs right MI direction decoding accuracy of 73.33% across 15 healthy subjects. In addition, the decoding accuracy offered by the phase features was higher than that of the envelope features, indicating the importance of phase features in MI kinematics decoding.The results reveal the significance of the parietal EEG in decoding of imagined kinematics and open new possibilities for future BCI research.
由于其广泛的潜在应用,包括神经假肢控制和神经康复,对控制外部设备的脑信号解码的研究正在迅速出现。基于脑电图(EEG)的非侵入性脑机接口(BCI)系统对脑信号进行解码,在大脑和计算机之间建立增强的通信和控制途径。高效 BCI 系统的开发需要准确解码用户意图背后的神经活动。本研究调查了与左右方向双向手部运动想象或运动想象(MI)相关的后顶叶区域的 EEG 特征的定向调谐。使用从两个半球的顶叶 EEG 得出的包络和相位特征的组合来解码所选手的想象运动方向。所提出的算法使用小波进行光谱分解,并根据包络和相位特征的 Fisher 分析来识别基于个体的有区别的子带级别。使用支持向量机分类器,从判别子带级别选择的特征来分类手的左右 MI 方向。此外,通过纳入基于最大方差的 EEG 时间-bin 选择算法来评估所提出算法的性能。使用基于个体特征的时间-bin 选择方法,该算法在 15 名健康受试者中产生了平均为 73.33%的左与右 MI 方向解码准确性。此外,相位特征的解码准确性高于包络特征,表明相位特征在 MI 运动学解码中的重要性。结果揭示了顶叶 EEG 在想象运动学解码中的重要性,并为未来的 BCI 研究开辟了新的可能性。