Suppr超能文献

将生物废弃物通过低温等离子体杂化系统转化为先进的碳材料:应用、机制、策略和未来展望。

Upcycling biowaste into advanced carbon materials via low-temperature plasma hybrid system: applications, mechanisms, strategies and future prospects.

机构信息

National Engineering Research Center For Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.

出版信息

Waste Manag. 2024 Dec 1;189:364-388. doi: 10.1016/j.wasman.2024.08.036. Epub 2024 Sep 4.

Abstract

This review focuses on the recent advances in the sustainable conversion of biowaste to valuable carbonaceous materials. This study summarizes the significant progress in biowaste-derived carbon materials (BCMs) via a plasma hybrid system. This includes systematic studies like AI-based multi-coupling systems, promising synthesis strategies from an economic point of view, and their potential applications towards energy, environment, and biomedicine. Plasma modified BCM has a new transition lattice phase and exhibits high resilience, while fabrication and formation mechanisms of BCMs are reviewed in plasma hybrid system. A unique 2D structure can be designed and formulated from the biowaste with fascinating physicochemical properties like high surface area, unique defect sites, and excellent conductivity. The structure of BCMs offers various activated sites for element doping and it shows satisfactory adsorption capability, and dynamic performance in the field of electrochemistry. In recent years, many studies have been reported on the biowaste conversion into valuable materials for various applications. Synthesis methods are an indispensable factor that directly affects the structure and properties of BCMs. Therefore, it is imperative to review the facile synthesis methods and the mechanisms behind the formation of BCMs derived from the low-temperature plasma hybrid system, which is the necessity to obtain BCMs having desirable structure and properties by choosing a suitable synthesis process. Advanced carbon-neutral materials could be widely synthesized as catalysts for application in environmental remediation, energy conversion and storage, and biotechnology.

摘要

本综述重点关注生物废物向有价值的碳质材料的可持续转化方面的最新进展。本研究通过等离子体混合系统总结了生物废物衍生碳材料(BCMs)的重要进展。这包括基于 AI 的多耦合系统的系统研究、从经济角度来看有前途的合成策略,以及它们在能源、环境和生物医学方面的潜在应用。等离子体改性的 BCM 具有新的过渡晶格相和高弹性,同时还综述了等离子体混合系统中 BCM 的制造和形成机制。通过独特的二维结构可以从生物废物中设计和配方出来,具有高比表面积、独特的缺陷位和优异的导电性等迷人的物理化学性质。BCMs 的结构为元素掺杂提供了各种活性位点,在电化学领域表现出令人满意的吸附能力和动态性能。近年来,许多研究报告了将生物废物转化为具有各种应用价值的材料的方法。合成方法是直接影响 BCMs 结构和性能的不可或缺的因素。因此,有必要回顾低温等离子体混合系统中从生物废物衍生的 BCMs 的简便合成方法和形成机制,这是通过选择合适的合成工艺获得具有理想结构和性能的 BCMs 的必要性。先进的碳中性材料可以作为催化剂广泛合成,用于环境修复、能源转化和存储以及生物技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验