Suppr超能文献

深度学习辅助的肺癌交互式勾画:对勾画时间和一致性的影响。

Deep learning-assisted interactive contouring of lung cancer: Impact on contouring time and consistency.

机构信息

Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK; Department of Oncology, University of Oxford, Oxford, UK; Mirada Medical Ltd, Oxford, UK.

Edinburgh Cancer Centre, Western General Hospital, Edinburgh, UK.

出版信息

Radiother Oncol. 2024 Nov;200:110500. doi: 10.1016/j.radonc.2024.110500. Epub 2024 Sep 3.

Abstract

BACKGROUND AND PURPOSE

To evaluate the impact of a deep learning (DL)-assisted interactive contouring tool on inter-observer variability and the time taken to complete tumour contouring.

MATERIALS AND METHODS

Nine clinicians contoured the gross tumour volume (GTV) using the PET-CT scans of 10 non-small cell lung cancer (NSCLC) patients, either using DL-assisted or manual contouring tools. After contouring a case using one contouring method, the same case was contoured one week later using the other method. The contours and time taken were compared.

RESULTS

Use of the DL-assisted tool led to a statistically significant decrease in active contouring time of 23 % relative to the standard manual segmentation method (p < 0.01). The mean observation time for all clinicians and cases made up nearly 60 % of interaction time for both contouring approaches. On average the time spent contouring per case was reduced from 22 min to 19 min when using the DL-assisted tool. Additionally, the DL-assisted tool reduced contour variability in the parts of tumour where clinicians tended to disagree the most, while the consensus contour was similar whichever of the two contouring approaches was used.

CONCLUSIONS

A DL-assisted interactive contouring approach decreased active contouring time and local inter-observer variability when used to delineate lung cancer GTVs compared to a standard manual method. Integration of this tool into the clinical workflow could assist clinicians in contouring tasks and improve contouring efficiency.

摘要

背景与目的

评估深度学习(DL)辅助交互式勾画工具对观察者间变异性和完成肿瘤勾画所需时间的影响。

材料与方法

9 位临床医生使用 10 例非小细胞肺癌(NSCLC)患者的 PET-CT 扫描,分别使用 DL 辅助或手动勾画工具勾画大体肿瘤体积(GTV)。使用一种勾画方法勾画一个病例后,一周后使用另一种方法勾画同一个病例。比较勾画的轮廓和所用的时间。

结果

与标准手动分割方法相比,使用 DL 辅助工具可使主动勾画时间显著减少 23%(p<0.01)。所有临床医生和病例的观察时间平均占两种勾画方法交互时间的近 60%。使用 DL 辅助工具时,平均每个病例的勾画时间从 22 分钟减少到 19 分钟。此外,与标准手动分割方法相比,DL 辅助工具减少了肿瘤部位勾画的变异性,而在使用两种勾画方法中的任何一种时,共识轮廓都相似。

结论

与标准手动方法相比,用于勾画肺癌 GTV 时,DL 辅助交互式勾画方法可减少主动勾画时间和局部观察者间变异性。将该工具集成到临床工作流程中可以帮助临床医生完成勾画任务并提高勾画效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验