Choi Seou, Salamin Yannick, Roques-Carmes Charles, Dangovski Rumen, Luo Di, Chen Zhuo, Horodynski Michael, Sloan Jamison, Uddin Shiekh Zia, Soljačić Marin
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Commun. 2024 Sep 5;15(1):7760. doi: 10.1038/s41467-024-51509-0.
Probabilistic machine learning utilizes controllable sources of randomness to encode uncertainty and enable statistical modeling. Harnessing the pure randomness of quantum vacuum noise, which stems from fluctuating electromagnetic fields, has shown promise for high speed and energy-efficient stochastic photonic elements. Nevertheless, photonic computing hardware which can control these stochastic elements to program probabilistic machine learning algorithms has been limited. Here, we implement a photonic probabilistic computer consisting of a controllable stochastic photonic element - a photonic probabilistic neuron (PPN). Our PPN is implemented in a bistable optical parametric oscillator (OPO) with vacuum-level injected bias fields. We then program a measurement-and-feedback loop for time-multiplexed PPNs with electronic processors (FPGA or GPU) to solve certain probabilistic machine learning tasks. We showcase probabilistic inference and image generation of MNIST-handwritten digits, which are representative examples of discriminative and generative models. In both implementations, quantum vacuum noise is used as a random seed to encode classification uncertainty or probabilistic generation of samples. In addition, we propose a path towards an all-optical probabilistic computing platform, with an estimated sampling rate of ~1 Gbps and energy consumption of ~5 fJ/MAC. Our work paves the way for scalable, ultrafast, and energy-efficient probabilistic machine learning hardware.
概率机器学习利用可控的随机源对不确定性进行编码,并实现统计建模。利用源于波动电磁场的量子真空噪声的纯随机性,已显示出在高速和节能随机光子元件方面的潜力。然而,能够控制这些随机元件以对概率机器学习算法进行编程的光子计算硬件一直很有限。在此,我们实现了一种由可控随机光子元件——光子概率神经元(PPN)组成的光子概率计算机。我们的PPN在具有真空级注入偏置场的双稳态光学参量振荡器(OPO)中实现。然后,我们使用电子处理器(FPGA或GPU)为时分复用PPN编程一个测量与反馈回路,以解决某些概率机器学习任务。我们展示了MNIST手写数字的概率推理和图像生成,它们是判别模型和生成模型的代表性示例。在这两种实现中,量子真空噪声都被用作随机种子,以编码分类不确定性或样本的概率生成。此外,我们提出了一条通往全光概率计算平台的路径,估计采样率约为1 Gbps,能耗约为5 fJ/MAC。我们的工作为可扩展、超快速和节能的概率机器学习硬件铺平了道路。