Suppr超能文献

基于光子神经细胞自动机的深度学习。

Deep learning with photonic neural cellular automata.

作者信息

Li Gordon H Y, Leefmans Christian R, Williams James, Gray Robert M, Parto Midya, Marandi Alireza

机构信息

Department of Applied Physics, California Institute of Technology, Pasadena, CA, USA.

Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.

出版信息

Light Sci Appl. 2024 Oct 8;13(1):283. doi: 10.1038/s41377-024-01651-7.

Abstract

Rapid advancements in deep learning over the past decade have fueled an insatiable demand for efficient and scalable hardware. Photonics offers a promising solution by leveraging the unique properties of light. However, conventional neural network architectures, which typically require dense programmable connections, pose several practical challenges for photonic realizations. To overcome these limitations, we propose and experimentally demonstrate Photonic Neural Cellular Automata (PNCA) for photonic deep learning with sparse connectivity. PNCA harnesses the speed and interconnectivity of photonics, as well as the self-organizing nature of cellular automata through local interactions to achieve robust, reliable, and efficient processing. We utilize linear light interference and parametric nonlinear optics for all-optical computations in a time-multiplexed photonic network to experimentally perform self-organized image classification. We demonstrate binary (two-class) classification of images using as few as 3 programmable photonic parameters, achieving high experimental accuracy with the ability to also recognize out-of-distribution data. The proposed PNCA approach can be adapted to a wide range of existing photonic hardware and provides a compelling alternative to conventional photonic neural networks by maximizing the advantages of light-based computing whilst mitigating their practical challenges. Our results showcase the potential of PNCA in advancing photonic deep learning and highlights a path for next-generation photonic computers.

摘要

在过去十年中,深度学习的快速发展引发了对高效且可扩展硬件的无尽需求。光子学通过利用光的独特特性提供了一个很有前景的解决方案。然而,传统神经网络架构通常需要密集的可编程连接,这给光子学实现带来了几个实际挑战。为了克服这些限制,我们提出并通过实验证明了用于具有稀疏连接的光子深度学习的光子神经细胞自动机(PNCA)。PNCA利用了光子学的速度和互连性,以及细胞自动机通过局部相互作用的自组织性质,以实现强大、可靠且高效的处理。我们在时分复用光子网络中利用线性光干涉和参数非线性光学进行全光计算,以实验方式执行自组织图像分类。我们展示了使用少至3个可编程光子参数的图像二值(两类)分类,在能够识别分布外数据的情况下实现了高实验精度。所提出的PNCA方法可以适应广泛的现有光子硬件,并通过最大化基于光的计算优势同时减轻其实际挑战,为传统光子神经网络提供了一个有吸引力的替代方案。我们的结果展示了PNCA在推进光子深度学习方面的潜力,并突出了下一代光子计算机的发展路径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c211/11461964/2fab68b68875/41377_2024_1651_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验