Suppr超能文献

常规 T1 加权和弥散张量成像的多模态放射组学在早期鉴别帕金森病运动亚型中的应用。

Multi-modality radiomics of conventional T1 weighted and diffusion tensor imaging for differentiating Parkinson's disease motor subtypes in early-stages.

机构信息

Department of Computer Engineering, Payame Noor University Erbil Branch, Erbil, Iraq.

Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran.

出版信息

Sci Rep. 2024 Sep 5;14(1):20708. doi: 10.1038/s41598-024-71860-y.

Abstract

This study aimed to develop and validate a multi-modality radiomics approach using T1-weighted and diffusion tensor imaging (DTI) to differentiate Parkinson's disease (PD) motor subtypes, specifically tremor-dominant (TD) and postural instability gait difficulty (PIGD), in early disease stages. We analyzed T1-weighted and DTI scans from 140 early-stage PD patients (70 TD, 70 PIGD) and 70 healthy controls from the Parkinson's Progression Markers Initiative database. Radiomics features were extracted from 16 brain regions of interest. After harmonization and feature selection, four machine learning classifiers were trained and evaluated for both three-class (HC vs TD vs PIGD) and binary (TD vs PIGD) classification tasks. The light gradient boosting machine (LGBM) classifier demonstrated the best overall performance. For the three-class classification, LGBM achieved an accuracy of 85% and an area under the receiver operating characteristic curve (AUC) of 0.94 using combined T1 and DTI features. In the binary classification task, LGBM reached an accuracy of 95% and AUC of 0.95. Key discriminative features were identified in the Thalamus, Amygdala, Hippocampus, and Substantia Nigra for the three-group classification, and in the Pallidum, Amygdala, Hippocampus, and Accumbens for binary classification. The combined T1 + DTI approach consistently outperformed single-modality classifications, with DTI alone showing particularly low performance (AUC 0.55-0.62) in binary classification. The high accuracy and AUC values suggest that this approach could significantly improve early diagnosis and subtyping of PD. These findings have important implications for clinical management, potentially enabling more personalized treatment strategies based on early, accurate subtype identification.

摘要

本研究旨在开发和验证一种多模态放射组学方法,使用 T1 加权和弥散张量成像(DTI)来区分帕金森病(PD)的运动亚型,特别是震颤为主型(TD)和姿势不稳步态困难型(PIGD),在疾病早期阶段。我们分析了来自帕金森进展标志物倡议数据库的 140 名早期 PD 患者(70 名 TD,70 名 PIGD)和 70 名健康对照者的 T1 加权和 DTI 扫描。从 16 个感兴趣的脑区提取放射组学特征。经过调和与特征选择,我们训练并评估了四种机器学习分类器,用于三分类(HC 与 TD 与 PIGD)和二分类(TD 与 PIGD)任务。轻梯度提升机(LGBM)分类器表现出最佳的整体性能。对于三分类任务,LGBM 结合 T1 和 DTI 特征,准确率达到 85%,ROC 曲线下面积(AUC)为 0.94。在二分类任务中,LGBM 达到了 95%的准确率和 0.95 的 AUC。在三组分类中,丘脑、杏仁核、海马和黑质中识别出了关键的鉴别特征,而在二分类中,苍白球、杏仁核、海马和伏隔核中也识别出了关键的鉴别特征。T1+DTI 联合方法始终优于单模态分类,而单独使用 DTI 在二分类中表现出特别低的性能(AUC 0.55-0.62)。高准确率和 AUC 值表明,这种方法可以显著改善 PD 的早期诊断和亚型分类。这些发现对临床管理具有重要意义,可能使基于早期、准确的亚型识别的更个性化的治疗策略成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9964/11377437/d6a7d03960da/41598_2024_71860_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验