Suppr超能文献

使用线性和灵活判别分析在违反假设条件下预测弗里斯奶牛的产奶量。

Milk yield prediction in Friesian cows using linear and flexible discriminant analysis under assumptions violations.

机构信息

Department of Animal Wealth Development, Biostatistics Division, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.

Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat 123, Oman.

出版信息

BMC Vet Res. 2024 Sep 6;20(1):392. doi: 10.1186/s12917-024-04234-1.

Abstract

BACKGROUND

The application of novel technologies is now widely used to assist in making optimal decisions. This study aimed to evaluate the performance of linear discriminant analysis (LDA) and flexible discriminant analysis (FDA) in classifying and predicting Friesian cattle's milk production into low ([Formula: see text]4500 kg), medium (4500-7500 kg), and high ([Formula: see text]7500 kg) categories. A total of 3793 lactation records from cows calved between 2009 and 2020 were collected to examine some predictors such as age at first calving (AFC), lactation order (LO), days open (DO), days in milk (DIM), dry period (DP), calving season (CFS), 305-day milk yield (305-MY), calving interval (CI), and total breeding per conception (TBRD).

RESULTS

The comparison between LDA and FDA models was based on the significance of coefficients, total accuracy, sensitivity, precision, and F1-score. The LDA results revealed that DIM and 305-MY were the significant (P < 0.001) contributors for data classification, while the FDA was a lactation order. Classification accuracy results showed that the FDA model performed better than the LDA model in expressing accuracies of correctly classified cases as well as overall classification accuracy of milk yield. The FDA model outperformed LDA in both accuracy and F1-score. It achieved an accuracy of 82% compared to LDA's 71%. Similarly, the F1-score improved from a range of 0.667 to 0.79 for LDA to a higher range of 0.81 to 0.83 for FDA.

CONCLUSION

The findings of this study demonstrated that FDA was more resistant than LDA in case of assumption violations. Furthermore, the current study showed the feasibility and efficacy of LDA and FDA in interpreting and predicting livestock datasets.

摘要

背景

目前,新技术的应用广泛用于辅助做出最佳决策。本研究旨在评估线性判别分析(LDA)和灵活判别分析(FDA)在将荷斯坦奶牛产奶量分为低([Formula: see text]4500 千克)、中(4500-7500 千克)和高([Formula: see text]7500 千克)类别的分类和预测能力。本研究共收集了 2009 年至 2020 年期间分娩的 3793 个泌乳记录,以检查一些预测因子,如初产年龄(AFC)、泌乳序(LO)、开乳天数(DO)、泌乳天数(DIM)、干奶期(DP)、产犊季节(CFS)、305 天产奶量(305-MY)、产犊间隔(CI)和每配种受胎总繁殖率(TBRD)。

结果

LDA 和 FDA 模型的比较基于系数的显著性、总准确性、敏感性、精度和 F1 分数。LDA 结果表明,DIM 和 305-MY 是数据分类的重要(P < 0.001)因素,而 FDA 是泌乳序。分类准确性结果表明,FDA 模型在表达正确分类案例的准确性以及产奶量的整体分类准确性方面优于 LDA 模型。FDA 模型在准确性和 F1 分数方面均优于 LDA。它的准确率为 82%,而 LDA 的准确率为 71%。同样,F1 分数从 LDA 的 0.667 到 0.79 提高到 FDA 的 0.81 到 0.83。

结论

本研究结果表明,FDA 比 LDA 更能抵抗假设违反。此外,本研究还表明 LDA 和 FDA 在解释和预测家畜数据集方面具有可行性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d407/11378405/a1edca62e5dd/12917_2024_4234_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验