Department of Trauma Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
3D Lab/Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
J Orthop Surg Res. 2024 Sep 5;19(1):541. doi: 10.1186/s13018-024-04957-9.
In acetabular fracture surgery, understanding the biomechanical behaviour of fractures and implants is beneficial for clinical decision-making about implant selection and postoperative (early) weightbearing protocols. This study outlines a novel approach for creating finite element models (FEA) from actual clinical cases. Our objectives were to (1) create a detailed semi-automatic three-dimensional FEA of a patient with a transverse posterior wall acetabular fracture and (2) biomechanically compare patient-specific implants with manually bent off-the-shelf implants.
A computational study was performed in which we developed three finite element models. The models were derived from clinical imaging data of a 20-year-old male with a transverse posterior wall acetabular fracture treated with a patient-specific implant. This implant was designed to fit the patient's anatomy and fracture configuration, allowing for optimal placement and predetermined screw trajectories. The three FEA models included an intact hemipelvis for baseline comparison, one with a fracture fixated with a patient-specific implant, and another with a conventional implant. Two loading conditions were investigated: standing up and peak walking forces. Von Mises stress and displacement patterns in bone, implants and screws were analysed to assess the biomechanical behaviour of fracture fixation with either a patient-specific versus a conventional implant.
The finite element models demonstrated that for a transverse posterior wall type fracture, a patient-specific implant resulted in lower peak stresses in the bone (30 MPa and 56 MPa) in standing-up and peak walking scenario, respectively, compared to the conventional implant model (46 MPa and 90 MPa). The results suggested that patient-specific implant could safely withstand standing-up and walking after surgery, with maximum von Mises stresses in the implant of 156 MPa and 371 MPa, respectively. The results from the conventional implant indicate a likelihood of implant failure, with von Mises stresses in the implant (499 MPa and 1000 MPa) exceeding the yield stress of stainless steel.
This study presents a workflow for conducting finite element analysis of real clinical cases in acetabular fracture surgery. This concept of personalized biomechanical fracture and implant assessment can eventually be applied in clinical settings to guide implant selection, compare conventional implants with innovative patient-specific ones, optimizing implant designs (including shape, size, materials, screw positions), and determine whether immediate full weight-bearing can be safely permitted.
在髋臼骨折手术中,了解骨折和植入物的生物力学行为有助于临床决策,包括选择植入物和术后(早期)负重方案。本研究概述了一种从实际临床病例中创建有限元模型(FEA)的新方法。我们的目标是:(1)创建一位患有髋臼横壁后柱骨折患者的详细半自动三维 FEA;(2)对特定于患者的植入物与手动弯曲的市售植入物进行生物力学比较。
进行了一项计算研究,其中我们开发了三个有限元模型。这些模型源自一位 20 岁男性的临床成像数据,该患者患有髋臼横壁后柱骨折,采用特定于患者的植入物治疗。该植入物旨在适应患者的解剖结构和骨折形态,以实现最佳的植入位置和预定的螺钉轨迹。三个 FEA 模型包括一个完整的半骨盆作为基线比较,一个用特定于患者的植入物固定的骨折模型,以及另一个用传统植入物固定的骨折模型。研究了两种加载情况:站立和最大步行力。分析了骨、植入物和螺钉中的 von Mises 应力和位移模式,以评估特定于患者的植入物与传统植入物固定骨折的生物力学行为。
有限元模型表明,对于横壁后柱型骨折,与传统植入物模型相比(站立时为 46MPa 和最大步行时为 90MPa),特定于患者的植入物在站立和最大步行时分别导致骨中的峰值应力降低(30MPa 和 56MPa)。结果表明,特定于患者的植入物可以安全承受手术后的站立和行走,最大 von Mises 应力分别为植入物中的 156MPa 和 371MPa。传统植入物的结果表明存在植入物失效的可能性,植入物中的 von Mises 应力(499MPa 和 1000MPa)超过不锈钢的屈服强度。
本研究提出了一种在髋臼骨折手术中对真实临床病例进行有限元分析的工作流程。这种个性化生物力学骨折和植入物评估的概念最终可以在临床环境中应用,以指导植入物选择,比较传统植入物与创新的特定于患者的植入物,优化植入物设计(包括形状、尺寸、材料、螺钉位置),并确定是否可以安全地立即完全负重。