Suppr超能文献

模拟微重力环境下的水凝胶:发挥作用的热力学

Hydrogels in Simulated Microgravity: Thermodynamics at Play.

作者信息

Sepahvandi Azadeh, Johnson Joseph, Arasan Ava, Cataldo Ryan, Ghoreishian Seyed Majid

机构信息

Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29201, USA.

Davis College of Engineering, University of California, Davis, CA 95616, USA.

出版信息

Gels. 2025 May 3;11(5):342. doi: 10.3390/gels11050342.

Abstract

Hydrogels have become indispensable in biomedical research and regenerative therapies due to their high water content, tissue-like mechanics, and tunable biochemical properties. However, their behavior under altered gravitational conditions-particularly simulated microgravity (SMG)-presents a frontier of challenges and opportunities that remain underexplored. This comprehensive review provides a detailed comparative analysis of hydrogel performance in normal gravity versus SMG environments, focusing on the structural, physicochemical, and thermodynamic parameters that govern their functionality. We critically examine how microgravity influences polymer network formation, fluid dynamics, swelling behavior, mechanical stability, and degradation kinetics. SMG disrupts convection, sedimentation, and phase separation, often leading to inhomogeneous crosslinking and altered diffusion profiles. These changes can compromise hydrogel uniformity, anisotropy, and responsiveness, which are essential for biomedical applications such as drug delivery, tissue regeneration, and biosensing. To address these limitations, we propose a thermodynamic framework that integrates osmotic pressure regulation, entropy-driven swelling, and pressure-temperature control to enhance hydrogel stability and functionality in low-gravity environments. The integration of predictive modeling approaches-including finite element simulations, phase-field models, and swelling kinetics-provides a robust pathway to design space-adapted hydrogel systems. The review also outlines future directions for optimizing hydrogel platforms in extraterrestrial settings, advocating for synergistic advances in material science, biophysics, and space health. These insights offer a strategic foundation for the rational development of next-generation hydrogel technologies tailored for long-duration space missions and planetary biomedical infrastructure.

摘要

水凝胶因其高含水量、类组织力学性能和可调节的生化特性,在生物医学研究和再生疗法中已变得不可或缺。然而,它们在改变的重力条件下,特别是模拟微重力(SMG)环境下的行为,呈现出一个尚未得到充分探索的挑战与机遇前沿领域。这篇全面综述对水凝胶在正常重力与模拟微重力环境中的性能进行了详细的比较分析,重点关注了决定其功能的结构、物理化学和热力学参数。我们批判性地研究了微重力如何影响聚合物网络形成、流体动力学、溶胀行为、机械稳定性和降解动力学。模拟微重力会破坏对流、沉降和相分离,常常导致交联不均匀和扩散分布改变。这些变化会损害水凝胶的均匀性、各向异性和响应性,而这些对于药物递送、组织再生和生物传感等生物医学应用至关重要。为解决这些限制,我们提出了一个热力学框架,该框架整合了渗透压调节、熵驱动溶胀以及压力 - 温度控制,以增强水凝胶在低重力环境中的稳定性和功能。包括有限元模拟、相场模型和溶胀动力学在内的预测建模方法的整合,为设计适应空间的水凝胶系统提供了一条强大的途径。该综述还概述了在外太空环境中优化水凝胶平台的未来方向,倡导在材料科学、生物物理学和空间健康方面取得协同进展。这些见解为合理开发适用于长期太空任务和行星生物医学基础设施的下一代水凝胶技术提供了战略基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6554/12110981/abcf4b63e0d3/gels-11-00342-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验