Asadzadeh Homayoun, Renkes Scott, Kim MinJun, Alexandrakis George
University of Texas at Arlington, Bioengineering Department, Arlington, TX 76010, USA.
Southern Methodist University, Department of Mechanical Engineering, Dallas, TX 75275, USA.
Sens Biosensing Res. 2023 Aug;41. doi: 10.1016/j.sbsr.2023.100581. Epub 2023 Aug 11.
Bimodal optical-electrical data generated when a 20 nm diameter silica (SiO) nanoparticle was trapped by a plasmonic nanopore sensor were simulated using Multiphysics COMSOL and compared with sensor measurements for closely matching experimental parameters. The nanosensor, employed self-induced back action (SIBA) to optically trap nanoparticles in the center of a double nanohole (DNH) structure on top a solid-state nanopores (ssNP). This SIBA actuated nanopore electrophoresis (SANE) sensor enables simultaneous capture of optical and electrical data generated by several underlying forces acting on the trapped SiO nanoparticle: plasmonic optical trapping, electroosmosis, electrophoresis, viscous drag, and heat conduction forces. The Multiphysics simulations enabled dissecting the relative contributions of those forces acting on the nanoparticle as a function of its location above and through the sensor's ssNP. Comparisons between simulations and experiments demonstrated qualitative similarities in the optical and electrical time-series data generated as the nanoparticle entered and exited from the SANE sensor. These experimental parameter-matched simulations indicated that the competition between optical and electrical forces shifted the trapping equilibrium position close to the top opening of the ssNP, relative to the optical trapping force maximum that was located several nm above. The experimentally estimated minimum for the optical force needed to trap a SiO nanoparticle was consistent with corresponding simulation predictions of optical-electrical force balance. The comparison of Multiphysics simulations with experiments improves our understanding of the interplay between optical and electrical forces as a function of nanoparticle position across this plasmonic nanopore sensor.
利用多物理场COMSOL软件模拟了直径为20nm的二氧化硅(SiO)纳米颗粒被等离子体纳米孔传感器捕获时产生的双峰光电数据,并将其与传感器测量结果进行比较,以确保实验参数紧密匹配。该纳米传感器采用自感应背向作用(SIBA)在固态纳米孔(ssNP)顶部的双纳米孔(DNH)结构中心光学捕获纳米颗粒。这种由SIBA驱动的纳米孔电泳(SANE)传感器能够同时捕获作用于被捕获的SiO纳米颗粒上的几种潜在力所产生的光学和电学数据:等离子体光学捕获、电渗、电泳、粘性阻力和热传导力。多物理场模拟能够剖析这些作用于纳米颗粒上的力的相对贡献,这些力是纳米颗粒在传感器ssNP上方和穿过传感器时位置的函数。模拟与实验之间的比较表明,当纳米颗粒进入和离开SANE传感器时,所产生的光学和电学时间序列数据在定性上具有相似性。这些与实验参数匹配的模拟表明,相对于位于上方几纳米处的光学捕获力最大值,光学力和电力之间的竞争使捕获平衡位置靠近ssNP的顶部开口。实验估计捕获SiO纳米颗粒所需的光学力最小值与光电力平衡的相应模拟预测一致。多物理场模拟与实验的比较增进了我们对光学力和电力之间相互作用的理解,这种相互作用是纳米颗粒在这种等离子体纳米孔传感器上位置的函数。