Electrical and Computer Engineering Department, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States.
Biotechnology Science and Engineering Program, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States.
Langmuir. 2017 Nov 28;33(47):13680-13688. doi: 10.1021/acs.langmuir.7b02404. Epub 2017 Nov 16.
Nanopore-based technologies are highly adaptable supports for developing label-free sensor chips to characterize lipid bilayers, membrane proteins, and nucleotides. We utilized a single nanopore chip to study the electrophysiology of the epithelial Na channel (ENaC) incorporated in supported lipid membrane (SLM). An isolated nanopore was developed inside the silicon cavity followed by fusing large unilamellar vesicles (LUVs) of DPPS (1,2-dipalmitoyl-sn-glycero-3-phosphoserine) and DPPE (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine) to produce a solvent-free SLM with giga-ohm (GΩ) sealed impedance. The presence and thickness of SLM on the nanopore chip were confirmed using atomic force spectroscopy. The functionality of SLM with and without ENaC was verified in terms of electrical impedance and capacitance by sweeping the frequency from 0.01 Hz to 100 kHz using electrochemical impedance spectroscopy. The nanopore chip exhibits long-term stability for the lipid bilayer before (144 h) and after (16 h) incorporation of ENaC. Amiloride, an inhibitor of ENaC, was utilized at different concentrations to test the integrity of fused ENaC in the lipid bilayer supported on a single nanopore chip. The developed model presents excellent electrical properties and improved mechanical stability of SLM, making this technology a reliable platform to study ion channel electrophysiology.
基于纳米孔的技术是开发无标记传感器芯片的高度适应性支持,可用于表征脂质双层、膜蛋白和核苷酸。我们利用单个纳米孔芯片研究了整合在支撑脂质膜 (SLM) 中的上皮钠离子通道 (ENaC) 的电生理学。在硅腔内部开发了一个单独的纳米孔,然后融合 DPPS(1,2-二棕榈酰-sn-甘油-3-磷酸丝氨酸)和 DPPE(1,2-二棕榈酰-sn-甘油-3-磷酸乙醇胺)的大单层囊泡 (LUVs),以产生具有千兆欧姆 (GΩ) 密封阻抗的无溶剂 SLM。使用原子力光谱法确认纳米孔芯片上 SLM 的存在和厚度。通过使用电化学阻抗谱从 0.01 Hz 到 100 kHz 扫频,从电导率和电容方面验证了具有和不具有 ENaC 的 SLM 的功能。在整合 ENaC 之前(144 小时)和之后(16 小时),纳米孔芯片对脂质双层表现出长期稳定性。利用不同浓度的 ENaC 抑制剂阿米洛利来测试在单个纳米孔芯片上支撑的脂质双层中融合的 ENaC 的完整性。所开发的模型具有出色的电性能和改进的 SLM 机械稳定性,使这项技术成为研究离子通道电生理学的可靠平台。