Jaegers Nicholas R, Danghyan Vardan, Shangguan Junnan, Lizandara-Pueyo Carlos, Deshlahra Prashant, Iglesia Enrique
Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, United States.
BASF SE, 67056 Ludwigshafen am Rhein, Germany.
J Am Chem Soc. 2024 Sep 18;146(37):25710-25726. doi: 10.1021/jacs.4c07766. Epub 2024 Sep 6.
Alkane dehydrogenation is an enabling route to make alkenes useful as chemical intermediates. This study demonstrates the high reactivity of Lewis acid-base (LAB) site pairs at ZrO powders for dehydrogenation of C-C alkanes and the essential requirement for chemical treatments to remove strongly bound HO and CO titrants to avoid the high temperatures required for their desorption and the concomitant loss of active sites through sintering and annealing of ZrO crystallites. The energies and free energies of bound intermediates and transition states from density functional theory (DFT), taken together with kinetic analysis and isotopic methods, demonstrated the kinetic relevance and heterolytic character of the first C-H activation at terminal C-atoms for all alkanes with a modest activation barrier (84 kJ mol) at essentially bare Zr-O LAB site pairs. β-Hydride elimination from the formed alkyl carbanions lead to their desorption as alkene products in steps that are favored over their parallel C-C cleavage reactions (by 100 kJ mol), leading to high dehydrogenation selectivities (>98%) at the temperatures required for practical yields in such endothermic dehydrogenation reactions (700-900 K). The facile recombination of bound proton-hydride pairs then completes a dehydrogenation turnover. These findings provide compelling evidence for the remarkable reactivity and selectivity of LAB sites on earth-abundant oxides and for the need to uncover them through chemical treatments, which combine to give gravimetric dehydrogenation rates that exceed those on the toxic (Cr) or costly (Pt) catalysts used in practice.
烷烃脱氢是制备作为化学中间体的烯烃的一条可行途径。本研究表明,ZrO粉末上的路易斯酸碱(LAB)位点对对于C-C烷烃脱氢具有高反应活性,并且化学处理对于去除强结合的HO和CO滴定剂至关重要,以避免其脱附所需的高温以及ZrO微晶烧结和退火导致的活性位点的伴随损失。密度泛函理论(DFT)计算得到的结合中间体和过渡态的能量和自由能,结合动力学分析和同位素方法,证明了在基本裸露的Zr-O LAB位点对处,所有烷烃末端C原子上首次C-H活化的动力学相关性和异裂性质,其活化势垒适中(84 kJ/mol)。从形成的烷基碳负离子中消除β-氢化物,使其逐步脱附为烯烃产物,这比平行的C-C裂解反应更有利(相差100 kJ/mol),从而在这种吸热脱氢反应实际产率所需的温度(700 - 900 K)下实现高脱氢选择性(>98%)。结合的质子 - 氢化物对的容易重组随后完成了脱氢周转。这些发现为地球上丰富的氧化物上LAB位点的显著反应活性和选择性提供了令人信服的证据,也证明了通过化学处理来揭示它们的必要性,这些处理相结合可得到超过实际使用的有毒(Cr)或昂贵(Pt)催化剂的重量脱氢速率。