Drontschenko Viktoria, Bangerter Felix H, Ochsenfeld Christian
Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany.
Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany.
J Chem Theory Comput. 2023 Nov 14;19(21):7542-7554. doi: 10.1021/acs.jctc.3c00542. Epub 2023 Oct 20.
A method for the analytical computation of nuclear magnetic resonance (NMR) shieldings within the direct random phase approximation (RPA) is presented. As a starting point, we use the RPA ground-state energy expression within the resolution-of-the-identity approximation in the atomic-orbital formalism. As has been shown in a recent benchmark study using numerical second derivatives [Glasbrenner, M. 2022, 18, 192], RPA based on a Hartree-Fock reference shows accuracies comparable to coupled cluster singles and doubles (CCSD) for NMR chemical shieldings. Together with the much lower computational cost of RPA, it has emerged as an accurate method for the computation of NMR shieldings. Therefore, we aim to extend the applicability of RPA NMR to larger systems by introducing analytical second-order derivatives, making it a viable method for the accurate and efficient computation of NMR chemical shieldings.
提出了一种在直接随机相位近似(RPA)内进行核磁共振(NMR)屏蔽解析计算的方法。作为起点,我们在原子轨道形式的单位分解近似内使用RPA基态能量表达式。正如最近一项使用数值二阶导数的基准研究[格拉斯布伦纳,M. 2022,18,192]所示,基于哈特里-福克参考的RPA对于NMR化学屏蔽显示出与耦合簇单双激发(CCSD)相当的精度。再加上RPA低得多的计算成本,它已成为一种计算NMR屏蔽的精确方法。因此,我们旨在通过引入解析二阶导数来扩展RPA NMR对更大体系的适用性,使其成为一种精确且高效计算NMR化学屏蔽的可行方法。