Graf Daniel, Beuerle Matthias, Ochsenfeld Christian
Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry , University of Munich (LMU) , D-81377 Munich , Germany.
J Chem Theory Comput. 2019 Aug 13;15(8):4468-4477. doi: 10.1021/acs.jctc.9b00444. Epub 2019 Aug 1.
An efficient minimization of the random phase approximation (RPA) energy with respect to the one-particle density matrix in the atomic orbital space is presented. The problem of imposing full self-consistency on functionals depending on the potential itself is bypassed by approximating the RPA Hamiltonian on the basis of the well-known Hartree-Fock Hamiltonian making our self-consistent RPA method completely parameter-free. It is shown that the new method not only outperforms post-Kohn-Sham RPA in describing noncovalent interactions but also gives accurate dipole moments demonstrating the high quality of the calculated densities. Furthermore, the main drawback of atomic orbital based methods, in increasing the prefactor as compared to their canonical counterparts, is overcome by introducing Cholesky decomposed projectors allowing the use of large basis sets. Exploiting the locality of atomic and/or Cholesky orbitals enables us to present a self-consistent RPA method which shows asymptotically quadratic scaling opening the door for calculations on large molecular systems.
提出了一种在原子轨道空间中相对于单粒子密度矩阵有效最小化随机相位近似(RPA)能量的方法。通过在著名的哈特里 - 福克哈密顿量的基础上近似RPA哈密顿量,绕过了对依赖于势本身的泛函施加完全自洽性的问题,使得我们的自洽RPA方法完全无参数。结果表明,新方法不仅在描述非共价相互作用方面优于后科恩 - 沈RPA,而且给出了准确的偶极矩,证明了计算密度的高质量。此外,与基于规范轨道的对应方法相比,基于原子轨道的方法在增加前置因子方面的主要缺点,通过引入Cholesky分解投影算符得以克服,从而允许使用大基组。利用原子和/或Cholesky轨道的局部性,使我们能够提出一种自洽RPA方法,该方法显示出渐近二次缩放,为大分子系统的计算打开了大门。