Suppr超能文献

藻菌污泥活性炭/FeO纳米复合材料的合成及其通过同时吸附和非均相芬顿催化降解去除抗生素环丙沙星的潜力。

Synthesis of algal-bacterial sludge activated carbon/FeO nanocomposite and its potential in antibiotic ciprofloxacin removal by simultaneous adsorption and heterogeneous Fenton catalytic degradation.

作者信息

Oruganti Raj Kumar, Bandyopadhyay Saswata, Panda Tarun K, Shee Debaprasad, Bhattacharyya Debraj

机构信息

Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India, 502284.

Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India, 502284.

出版信息

Environ Sci Pollut Res Int. 2024 Dec;31(60):67594-67612. doi: 10.1007/s11356-024-34830-5. Epub 2024 Sep 6.

Abstract

The extensive use of pharmaceuticals has increased their presence in the environment, posing significant ecological and public health concerns. The current study reports the magnetic nanocomposite (M-ABAC) synthesis using the algal-bacterial sludge as the precursor for activated carbon and evaluates its potential in fluoroquinolone antibiotics removal. The activated carbon from algal-bacterial sludge was composited with FeO nanoparticles using the co-precipitation method. The M-ABAC was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), Brunauer-Emmett-Teller (BET) analysis, and vibrating sample magnetometry (VSM). M-ABAC was employed for antibiotic ciprofloxacin (CIP) removal by combined adsorption and heterogenous Fenton degradation. The adsorption studies reveal that the Langmuir isotherm best fits the experimental data, with a maximum adsorption capacity of 81.6 mg/g. Pseudo-second-order kinetic model well describes adsorption kinetics. Fenton catalytic degradation was performed using HO as the activating agent. The optimal HO dosage was observed to be 10 mM. A CIP adsorptive removal efficiency of 75% was observed at 2 g/L dosage of M-ABAC in a 200 ppm CIP solution. Simultaneous adsorption and Fenton catalytic degradation further enhanced the removal efficiency to 92%. Radical scavengers experiment revealed that the hydroxyl radical (•OH) was the dominant reactive oxidation species. The degradation products of the CIP were identified using liquid chromatography quadrupole time-of-flight mass spectroscopy (LC-QTOF-MS). The possible CIP degradation mechanisms include decarboxylation, piperazine moiety degradation, defluorination, and hydroxylation.

摘要

药物的广泛使用增加了它们在环境中的存在,引发了重大的生态和公共卫生问题。当前的研究报告了使用藻菌污泥作为活性炭前驱体合成磁性纳米复合材料(M-ABAC),并评估了其去除氟喹诺酮类抗生素的潜力。将来自藻菌污泥的活性炭与FeO纳米颗粒通过共沉淀法进行复合。使用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、X射线光电子能谱(XPS)、带有能量色散X射线光谱的扫描电子显微镜(SEM-EDX)、布鲁诺尔-埃米特-泰勒(BET)分析和振动样品磁强计(VSM)对M-ABAC进行了表征。M-ABAC通过联合吸附和非均相芬顿降解用于去除抗生素环丙沙星(CIP)。吸附研究表明,朗缪尔等温线最符合实验数据,最大吸附容量为81.6 mg/g。准二级动力学模型很好地描述了吸附动力学。使用H₂O₂作为活化剂进行芬顿催化降解。观察到最佳的H₂O₂剂量为10 mM。在200 ppm CIP溶液中,M-ABAC剂量为2 g/L时,CIP的吸附去除效率为75%。同时进行吸附和芬顿催化降解进一步将去除效率提高到92%。自由基清除剂实验表明,羟基自由基(•OH)是主要的活性氧化物种。使用液相色谱四极杆飞行时间质谱(LC-QTOF-MS)鉴定了CIP的降解产物。CIP可能 的降解机制包括脱羧、哌嗪部分降解、脱氟和羟基化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验