Suppr超能文献

影响尖孢镰刀菌(CCASU - 2023 - F9)合成的硒纳米颗粒的营养条件,及其对从动物饲料中分离出的产霉菌毒素真菌的生物活性。

Nutritional conditions affecting of selenium nanoparticles synthesized by Fusarium oxysporum (CCASU-2023-F9), and their biological activities against mycotoxin-producing fungi isolated from animal feed.

作者信息

Gharieb Mohamed M, Hassan Esraa M, Soliman Azza Mahmoud

机构信息

Department of Botany & Microbiology, Faculty of Science, Menoufia University, Shebeen El-Koom, Menoufia, Egypt.

出版信息

Braz J Microbiol. 2024 Dec;55(4):3465-3476. doi: 10.1007/s42770-024-01494-9. Epub 2024 Sep 6.

Abstract

One of the most promising biologically based nanomanufacturing processes is the production of selenium nanoparticles (SeNPs) by fungi. The use of these biosynthesized nanoparticles in agricultural practices has emerged as a new approach for controlling pathogen growth and mycotoxin production. In the present study, different chemical and physical parameters were investigated for the growth of Fusarium oxysporum (CCASU-2023-F9) to increase selenite reduction and obtain the highest yield of selenium nanoparticles (SeNPs). Fusarium oxysporum (CCASU-2023-F9) exhibited tolerance to up to 1 mM sodium selenite (NaSeO), accompanied by red coloration of the medium, which suggested the reduction of selenite and the formation of selenium nanoparticles (SeNPs). Reduced selenite was quantified using inductively coupled plasma‒mass spectrometry (ICP-MS), and the results revealed that Fusarium oxysporum (CCASU-2023-F9) is able to transform 45.5% and 50.9% of selenite into elemental selenium by using fructose and urea as the best carbon and nitrogen sources, respectively. An incubation temperature of 30 °C was the best physical condition at which 67.4% of the selenite was transformed into elemental selenium. The results also indicated that pH 7 was the optimum pH, as it displayed 27.2% selenite reduction with a net dry weight of 6.8 mg/mL. Increasing the concentration of sulfate resulted in a significant increase in selenite reduction, as it reached a maximum value of 75.3% at 0.15% g/ml sulfate. The maximum reduction in sodium selenite content was 85.2% at a C/N ratio of 2:1. The biosynthesized SeNPs exhibited antifungal activity against several fungi, such as Aspergillus flavus, Aspergillus niger, and Fusarium oxysporum, that were isolated from animal and poultry feed. Elevated SeNP concentrations (10500 ppm) significantly inhibited fungal growth. SeNPs at a concentration of 5000 ppm inhibited aflatoxin production (B1, B2, G1, and G2) by A. flavus, in addition to inhibiting mycotoxin production (T2 toxin, fumonisin B1, zearaleone, fusarin C, and moniliformin) by F. oxysporum. In conclusion, the results revealed favorable nutritional conditions for the maximum production of SeNPs by Fusarium oxysporum (CCASU-2023-F9) and indicated the marked inhibitory effect of SeNPs on mycotoxins that contaminate animal feed, causing serious consequences for animal health, and that lead to improving the quality of commercially produced animal feed. The obtained results can serve as a basis for commercial applicability.

摘要

最有前景的基于生物的纳米制造工艺之一是利用真菌生产硒纳米颗粒(SeNPs)。在农业实践中使用这些生物合成的纳米颗粒已成为控制病原体生长和霉菌毒素产生的一种新方法。在本研究中,研究了不同的化学和物理参数对尖孢镰刀菌(CCASU - 2023 - F9)生长的影响,以增加亚硒酸盐的还原并获得最高产量的硒纳米颗粒(SeNPs)。尖孢镰刀菌(CCASU - 2023 - F9)对高达1 mM的亚硒酸钠(NaSeO)具有耐受性,同时培养基会变红,这表明亚硒酸盐被还原并形成了硒纳米颗粒(SeNPs)。使用电感耦合等离子体质谱(ICP - MS)对还原的亚硒酸盐进行定量,结果表明,尖孢镰刀菌(CCASU - 2023 - F9)分别使用果糖和尿素作为最佳碳源和氮源时,能够将45.5%和50.9%的亚硒酸盐转化为元素硒。30℃的培养温度是最佳物理条件,在此条件下67.4%的亚硒酸盐转化为元素硒。结果还表明,pH 7是最佳pH值,此时亚硒酸盐还原率为27.2%,净干重为6.8 mg/mL。增加硫酸盐浓度会导致亚硒酸盐还原率显著提高,在硫酸盐浓度为0.15% g/ml时达到最大值75.3%。在C/N比为2:1时,亚硒酸钠含量的最大还原率为85.2%。生物合成的SeNPs对从动物和家禽饲料中分离出的几种真菌,如黄曲霉、黑曲霉和尖孢镰刀菌具有抗真菌活性。较高的SeNP浓度(10500 ppm)显著抑制真菌生长。浓度为5000 ppm的SeNPs除了抑制尖孢镰刀菌产生霉菌毒素(T2毒素、伏马菌素B1、玉米赤霉烯酮、镰刀菌素C和串珠镰刀菌素)外,还抑制黄曲霉产生黄曲霉毒素(B1、B2、G1和G2)。总之,结果揭示了有利于尖孢镰刀菌(CCASU - 2023 - F9)最大量生产SeNPs的营养条件,并表明SeNPs对污染动物饲料、对动物健康造成严重后果的霉菌毒素具有显著抑制作用,从而有助于提高商业生产的动物饲料质量。所获得的结果可作为商业应用的基础。

相似文献

本文引用的文献

2
The Role of Selenium Nanoparticles in Agriculture and Food Technology.纳米硒在农业和食品技术中的作用。
Biol Trace Elem Res. 2022 May;200(5):2528-2548. doi: 10.1007/s12011-021-02847-3. Epub 2021 Jul 30.
6
Fungal formation of selenium and tellurium nanoparticles.真菌合成硒和碲纳米颗粒。
Appl Microbiol Biotechnol. 2019 Sep;103(17):7241-7259. doi: 10.1007/s00253-019-09995-6. Epub 2019 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验