Suppr超能文献

实时无标定肌肉骨骼运动学的神经肌肉骨骼模型。

Real-Time Calibration-Free Musculotendon Kinematics for Neuromusculoskeletal Models.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:3486-3495. doi: 10.1109/TNSRE.2024.3455262. Epub 2024 Sep 20.

Abstract

Neuromusculoskeletal (NMS) models enable non-invasive estimation of clinically important internal biomechanics. A critical part of NMS modelling is the estimation of musculotendon kinematics, which comprise musculotendon unit lengths, moment arms, and lines of action. Musculotendon kinematics, which are partially dependent on joint angles, define the non-linear mapping of muscle forces to joint moments and contact forces. Currently, real-time computation of musculotendon kinematics requires creation of a per-individual surrogate model. The computational speed and accuracy of these surrogates degrade with increasing number of coordinates. We developed a feed-forward neural network that completely encodes musculotendon kinematics of a target model across a wide anthropometric range, enabling accurate real-time estimates of musculotendon kinematics without need for a priori creation of a per-individual surrogate model. Compared to reference, the neural network had median normalized errors ~0.1% for musculotendon lengths, <0.4% for moment arms, and <0.10° for line of action orientations. The neural network was employed within an electromyogram-informed NMS model to calculate hip contact forces, demonstrating little difference (normalized root mean square error 1.23±0.15 %) compared to using reference musculotendon kinematics. Finally, execution time was <0.04 ms per frame and constant for increasing number of model coordinates. Our approach to musculoskeletal kinematics may facilitate deployment of complex real-time NMS modelling in computer vision or wearable sensors applications to realize biomechanics monitoring, rehabilitation, and disease management outside the research laboratory.

摘要

神经肌肉骨骼 (NMS) 模型可实现对临床重要内部生物力学的非侵入式估计。NMS 建模的一个关键部分是估算肌肉肌腱运动学,包括肌肉肌腱单元长度、力臂和作用线。肌肉肌腱运动学部分依赖于关节角度,定义了肌肉力到关节力矩和接触力的非线性映射。目前,肌肉肌腱运动学的实时计算需要创建个体替代模型。这些替代模型的计算速度和准确性会随着坐标数量的增加而降低。我们开发了一种前馈神经网络,可以在广泛的人体测量范围内完全编码目标模型的肌肉肌腱运动学,从而能够准确实时地估计肌肉肌腱运动学,而无需事先创建个体替代模型。与参考值相比,神经网络的肌肉肌腱长度归一化误差中位数约为 0.1%,力臂<0.4%,作用线方向<0.10°。神经网络被用于肌电图启发的 NMS 模型中计算髋关节接触力,与使用参考肌肉肌腱运动学相比,差异很小(归一化均方根误差 1.23±0.15%)。最后,执行时间<0.04 毫秒/帧,且随着模型坐标数量的增加而保持不变。我们的肌肉骨骼运动学方法可以促进复杂的实时 NMS 建模在计算机视觉或可穿戴传感器应用中的部署,以实现研究实验室外的生物力学监测、康复和疾病管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验