Department of Mechanical Engineering, The University of Texas at Austin, 1 University Station C2200, Austin, TX 78712, USA.
J Biomech. 2012 Jun 1;45(9):1739-44. doi: 10.1016/j.jbiomech.2012.03.010. Epub 2012 Apr 19.
Generating muscle-driven forward dynamics simulations of human movement using detailed musculoskeletal models can be computationally expensive. This is due in part to the time required to calculate musculotendon geometry (e.g., musculotendon lengths and moment arms), which is necessary to determine and apply individual musculotendon forces during the simulation. Modeling upper-extremity musculotendon geometry can be especially challenging due to the large number of multi-articular muscles and complex muscle paths. To accurately represent this geometry, wrapping surface algorithms and/or other computationally expensive techniques (e.g., phantom segments) are used. This paper provides a set of computationally efficient polynomial regression equations that estimate musculotendon length and moment arms for thirty-two (32) upper-extremity musculotendon actuators representing the major muscles crossing the shoulder, elbow and wrist joints. Equations were developed using a least squares fitting technique based on geometry values obtained from a validated public-domain upper-extremity musculoskeletal model that used wrapping surface elements (Holzbaur et al., 2005). In general, the regression equations fit well the original model values, with an average root mean square difference for all musculotendon actuators over the represented joint space of 0.39 mm (1.1% of peak value). In addition, the equations reduced the computational time required to simulate a representative upper-extremity movement (i.e., wheelchair propulsion) by more than two orders of magnitude (315 versus 2.3 s). Thus, these equations can assist in generating computationally efficient forward dynamics simulations of a wide range of upper-extremity movements.
使用详细的肌肉骨骼模型生成人体运动的肌肉驱动正向动力学模拟可能计算成本很高。这部分是由于计算肌肉肌腱几何形状(例如肌肉肌腱长度和力臂)所需的时间,这是在模拟过程中确定和应用单个肌肉肌腱力所必需的。由于多关节肌肉数量众多且肌肉路径复杂,因此对上肢肌肉肌腱几何形状进行建模可能特别具有挑战性。为了准确表示这种几何形状,使用了缠绕表面算法和/或其他计算成本高的技术(例如幻影段)。本文提供了一组计算效率高的多项式回归方程,用于估计 32 个上肢肌肉肌腱执行器的肌肉肌腱长度和力臂,这些执行器代表穿过肩部、肘部和腕关节的主要肌肉。方程是使用基于基于验证的公共领域上肢肌肉骨骼模型中获得的几何值的最小二乘拟合技术开发的,该模型使用缠绕表面元素(Holzbaur 等人,2005 年)。一般来说,回归方程很好地拟合了原始模型值,所有肌肉肌腱执行器在代表关节空间中的平均均方根差为 0.39 毫米(峰值的 1.1%)。此外,这些方程将模拟代表性上肢运动(即轮椅推进)所需的计算时间减少了两个数量级以上(315 与 2.3 秒)。因此,这些方程可以帮助生成广泛的上肢运动的计算效率高的正向动力学模拟。