Suppr超能文献

三维上肢模型的肌肉肌腱长度和力矩臂。

Musculotendon lengths and moment arms for a three-dimensional upper-extremity model.

机构信息

Department of Mechanical Engineering, The University of Texas at Austin, 1 University Station C2200, Austin, TX 78712, USA.

出版信息

J Biomech. 2012 Jun 1;45(9):1739-44. doi: 10.1016/j.jbiomech.2012.03.010. Epub 2012 Apr 19.

Abstract

Generating muscle-driven forward dynamics simulations of human movement using detailed musculoskeletal models can be computationally expensive. This is due in part to the time required to calculate musculotendon geometry (e.g., musculotendon lengths and moment arms), which is necessary to determine and apply individual musculotendon forces during the simulation. Modeling upper-extremity musculotendon geometry can be especially challenging due to the large number of multi-articular muscles and complex muscle paths. To accurately represent this geometry, wrapping surface algorithms and/or other computationally expensive techniques (e.g., phantom segments) are used. This paper provides a set of computationally efficient polynomial regression equations that estimate musculotendon length and moment arms for thirty-two (32) upper-extremity musculotendon actuators representing the major muscles crossing the shoulder, elbow and wrist joints. Equations were developed using a least squares fitting technique based on geometry values obtained from a validated public-domain upper-extremity musculoskeletal model that used wrapping surface elements (Holzbaur et al., 2005). In general, the regression equations fit well the original model values, with an average root mean square difference for all musculotendon actuators over the represented joint space of 0.39 mm (1.1% of peak value). In addition, the equations reduced the computational time required to simulate a representative upper-extremity movement (i.e., wheelchair propulsion) by more than two orders of magnitude (315 versus 2.3 s). Thus, these equations can assist in generating computationally efficient forward dynamics simulations of a wide range of upper-extremity movements.

摘要

使用详细的肌肉骨骼模型生成人体运动的肌肉驱动正向动力学模拟可能计算成本很高。这部分是由于计算肌肉肌腱几何形状(例如肌肉肌腱长度和力臂)所需的时间,这是在模拟过程中确定和应用单个肌肉肌腱力所必需的。由于多关节肌肉数量众多且肌肉路径复杂,因此对上肢肌肉肌腱几何形状进行建模可能特别具有挑战性。为了准确表示这种几何形状,使用了缠绕表面算法和/或其他计算成本高的技术(例如幻影段)。本文提供了一组计算效率高的多项式回归方程,用于估计 32 个上肢肌肉肌腱执行器的肌肉肌腱长度和力臂,这些执行器代表穿过肩部、肘部和腕关节的主要肌肉。方程是使用基于基于验证的公共领域上肢肌肉骨骼模型中获得的几何值的最小二乘拟合技术开发的,该模型使用缠绕表面元素(Holzbaur 等人,2005 年)。一般来说,回归方程很好地拟合了原始模型值,所有肌肉肌腱执行器在代表关节空间中的平均均方根差为 0.39 毫米(峰值的 1.1%)。此外,这些方程将模拟代表性上肢运动(即轮椅推进)所需的计算时间减少了两个数量级以上(315 与 2.3 秒)。因此,这些方程可以帮助生成广泛的上肢运动的计算效率高的正向动力学模拟。

相似文献

1
Musculotendon lengths and moment arms for a three-dimensional upper-extremity model.
J Biomech. 2012 Jun 1;45(9):1739-44. doi: 10.1016/j.jbiomech.2012.03.010. Epub 2012 Apr 19.
2
Estimation of musculotendon kinematics in large musculoskeletal models using multidimensional B-splines.
J Biomech. 2012 Feb 2;45(3):595-601. doi: 10.1016/j.jbiomech.2011.10.040. Epub 2011 Dec 15.
3
Moment arms and musculotendon lengths estimation for a three-dimensional lower-limb model.
J Biomech. 2004 Sep;37(9):1447-53. doi: 10.1016/j.jbiomech.2003.12.017.
4
Estimation of musculotendon properties in the human upper limb.
Ann Biomed Eng. 2003 Feb;31(2):207-20. doi: 10.1114/1.1540105.
5
An Automatic and Simplified Approach to Muscle Path Modeling.
J Biomech Eng. 2022 Jan 1;144(1). doi: 10.1115/1.4051870.
7
8
A validated combined musculotendon path and muscle-joint kinematics model for the human hand.
Comput Methods Biomech Biomed Engin. 2019 May;22(7):727-739. doi: 10.1080/10255842.2019.1588256. Epub 2019 Mar 18.
9
An EMG-driven model of the upper extremity and estimation of long head biceps force.
Comput Biol Med. 2005 Jan;35(1):25-39. doi: 10.1016/j.compbiomed.2003.12.002.
10
A two-muscle, continuum-mechanical forward simulation of the upper limb.
Biomech Model Mechanobiol. 2017 Jun;16(3):743-762. doi: 10.1007/s10237-016-0850-x. Epub 2016 Nov 11.

引用本文的文献

1
Approximating complex musculoskeletal biomechanics using multidimensional autogenerating polynomials.
PLoS Comput Biol. 2020 Dec 16;16(12):e1008350. doi: 10.1371/journal.pcbi.1008350. eCollection 2020 Dec.
2
Forward dynamic optimization of handle path and muscle activity for handle based isokinetic wheelchair propulsion: A simulation study.
Comput Methods Biomech Biomed Engin. 2019 Jan;22(1):55-63. doi: 10.1080/10255842.2018.1527321. Epub 2018 Nov 6.
3
Forelimb muscle and joint actions in Archosauria: insights from (Pseudosuchia) and (Sauropodomorpha).
PeerJ. 2017 Nov 24;5:e3976. doi: 10.7717/peerj.3976. eCollection 2017.
4
The influence of wheelchair propulsion hand pattern on upper extremity muscle power and stress.
J Biomech. 2016 Jun 14;49(9):1554-1561. doi: 10.1016/j.jbiomech.2016.03.031. Epub 2016 Mar 25.
5
Compensatory strategies during manual wheelchair propulsion in response to weakness in individual muscle groups: A simulation study.
Clin Biomech (Bristol). 2016 Mar;33:34-41. doi: 10.1016/j.clinbiomech.2016.02.003. Epub 2016 Feb 18.
6
Finger muscle attachments for an OpenSim upper-extremity model.
PLoS One. 2015 Apr 8;10(4):e0121712. doi: 10.1371/journal.pone.0121712. eCollection 2015.
7
A comparison of static and dynamic optimization muscle force predictions during wheelchair propulsion.
J Biomech. 2014 Nov 7;47(14):3459-65. doi: 10.1016/j.jbiomech.2014.09.013. Epub 2014 Sep 23.

本文引用的文献

1
An EMG-driven musculoskeletal model of the shoulder.
Hum Mov Sci. 2012 Apr;31(2):429-47. doi: 10.1016/j.humov.2011.08.006. Epub 2012 Jan 12.
2
Limitations to maximum sprinting speed imposed by muscle mechanical properties.
J Biomech. 2012 Apr 5;45(6):1092-7. doi: 10.1016/j.jbiomech.2011.04.040. Epub 2011 Oct 27.
3
Effect of increased load on scapular kinematics during manual wheelchair propulsion in individuals with paraplegia and tetraplegia.
Hum Mov Sci. 2012 Apr;31(2):397-407. doi: 10.1016/j.humov.2011.05.006. Epub 2011 Jul 22.
4
The influence of altering push force effectiveness on upper extremity demand during wheelchair propulsion.
J Biomech. 2010 Oct 19;43(14):2771-9. doi: 10.1016/j.jbiomech.2010.06.020. Epub 2010 Aug 2.
5
Modulation of leg muscle function in response to altered demand for body support and forward propulsion during walking.
J Biomech. 2009 May 11;42(7):850-6. doi: 10.1016/j.jbiomech.2009.01.025. Epub 2009 Feb 27.
6
A musculoskeletal model of the upper extremity for use in the development of neuroprosthetic systems.
J Biomech. 2008;41(8):1714-21. doi: 10.1016/j.jbiomech.2008.03.001. Epub 2008 Apr 16.
7
Complete 3D kinematics of upper extremity functional tasks.
Gait Posture. 2008 Jan;27(1):120-7. doi: 10.1016/j.gaitpost.2007.03.002. Epub 2007 Apr 24.
8
Muscles that support the body also modulate forward progression during walking.
J Biomech. 2006;39(14):2623-30. doi: 10.1016/j.jbiomech.2005.08.017. Epub 2005 Oct 10.
9
Differences in muscle function during walking and running at the same speed.
J Biomech. 2006;39(11):2005-13. doi: 10.1016/j.jbiomech.2005.06.019. Epub 2005 Aug 29.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验