Suppr超能文献

利用大规模实验和机器学习发现人类决策理论。

Using large-scale experiments and machine learning to discover theories of human decision-making.

机构信息

Department of Computer Science, Princeton University, Princeton, NJ 08540, USA.

Department of Psychology, Princeton University, Princeton, NJ 08540, USA.

出版信息

Science. 2021 Jun 11;372(6547):1209-1214. doi: 10.1126/science.abe2629.

Abstract

Predicting and understanding how people make decisions has been a long-standing goal in many fields, with quantitative models of human decision-making informing research in both the social sciences and engineering. We show how progress toward this goal can be accelerated by using large datasets to power machine-learning algorithms that are constrained to produce interpretable psychological theories. Conducting the largest experiment on risky choice to date and analyzing the results using gradient-based optimization of differentiable decision theories implemented through artificial neural networks, we were able to recapitulate historical discoveries, establish that there is room to improve on existing theories, and discover a new, more accurate model of human decision-making in a form that preserves the insights from centuries of research.

摘要

预测和理解人们如何做出决策一直是许多领域的长期目标,人类决策的定量模型为社会科学和工程学的研究提供了信息。我们展示了如何通过使用大型数据集为机器学习算法提供动力来加速实现这一目标,这些算法受到限制,必须生成可解释的心理理论。通过使用人工神经网络实施基于梯度的可微分决策理论的优化来进行迄今为止最大的风险选择实验,并分析结果,我们能够重现历史发现,确定现有理论还有改进的空间,并以保留数百年研究洞察力的形式发现一种新的、更准确的人类决策模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验