Suppr超能文献

优化客舱进气速度和个人风险评估:引入个人污染比(PCR)方法,以增强飞机客舱感染风险评估。

Optimizing cabin air inlet velocities and personal risk assessment: Introducing the Personal Contamination Ratio (PCR) method for enhanced aircraft cabin infection risk evaluation.

机构信息

College of Air Transportation, Shanghai University of Engineering Science, Shanghai, China.

School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China.

出版信息

PLoS One. 2024 Sep 6;19(9):e0309730. doi: 10.1371/journal.pone.0309730. eCollection 2024.

Abstract

Recurrent epidemics of respiratory infections have drawn attention from the academic community and the general public in recent years. Aircraft plays a pivotal role in facilitating the cross-regional transmission of pathogens. In this study, we initially utilized an Airbus A320 model for computational fluid dynamics (CFD) simulations, subsequently validating the model's efficacy in characterizing cabin airflow patterns through comparison with empirical data. Building upon this validated framework, we investigate the transport dynamics of droplets of varying sizes under three air supply velocities. The Euler-Lagrangian method is employed to meticulously track key parameters associated with droplet transport, enabling a comprehensive analysis of particle behavior within the cabin environment. This study integrates acquired data into a novel PCR (Personal Contamination Rate) equation to assess individual contamination rates. Numerical simulations demonstrate that increasing air supply velocity leads to enhanced stability in the movement of larger particles compared to smaller ones. Results show that the number of potential infections in the cabin decreases by 51.8% at the highest air supply velocity compared to the base air supply velocity, and the total exposure risk rate reduced by 26.4%. Thus, optimizing air supply velocity within a specific range effectively reduces the potential infection area. In contrast to previous research, this study provides a more comprehensive analysis of droplet movement dynamics across various particle sizes. We introduce an improved method for calculating the breathing zone, thereby enhancing droplet counting accuracy. These findings have significant implications for improving non-pharmacological public health interventions and optimizing cabin ventilation system design.

摘要

近年来,呼吸道感染的反复流行引起了学术界和公众的关注。飞机在促进病原体的跨区域传播方面起着关键作用。在本研究中,我们首先使用空客 A320 模型进行计算流体动力学(CFD)模拟,随后通过与经验数据的比较验证了该模型在描述机舱气流模式方面的有效性。在这个经过验证的框架基础上,我们研究了在三种供气速度下不同大小的液滴的输运动力学。采用欧拉-拉格朗日方法细致地跟踪与液滴输运相关的关键参数,从而可以对机舱环境中颗粒的行为进行全面分析。本研究将获得的数据整合到一个新的 PCR(个人污染率)方程中,以评估个体的污染率。数值模拟表明,与较小的颗粒相比,增加供气速度会使较大颗粒的运动更加稳定。结果表明,与基础供气速度相比,最高供气速度下机舱内的潜在感染数量减少了 51.8%,总暴露风险率降低了 26.4%。因此,在特定范围内优化供气速度可以有效地减少潜在的感染区域。与之前的研究相比,本研究更全面地分析了不同粒径的液滴运动动力学。我们引入了一种改进的计算呼吸区的方法,从而提高了液滴计数的准确性。这些发现对于改善非药物性公共卫生干预措施和优化机舱通风系统设计具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8d5/11379313/ff170c6c41c3/pone.0309730.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验