Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
PLoS One. 2024 Sep 6;19(9):e0309709. doi: 10.1371/journal.pone.0309709. eCollection 2024.
Brain-computer interface (BCI) technology has gained recognition in various fields, including clinical applications, assistive technology, and human-computer interaction research. BCI enables communication, control, and monitoring of the affective/cognitive states of users. Recently, BCI has also found applications in the artistic field, enabling real-time art composition using brain activity signals, and engaging performers, spectators, or an entire audience with brain activity-based artistic environments. Existing techniques use specific features of brain activity, such as the P300 wave and SSVEPs, to control drawing tools, rather than directly reflecting brain activity in the output image. In this study, we present a novel approach that uses a latent diffusion model, a type of deep neural network, to generate images directly from continuous brain activity. We demonstrate this technology using local field potentials from the neocortex of freely moving rats. This system continuously converted the recorded brain activity into images. Our end-to-end method for generating images from brain activity opens new possibilities for creative expression and experimentation. Notably, our results show that the generated images successfully reflect the dynamic and stochastic nature of the underlying neural activity, providing a unique procedure for visualization of brain function.
脑机接口(BCI)技术在临床应用、辅助技术和人机交互研究等领域得到了广泛认可。BCI 能够实现用户情感/认知状态的通信、控制和监测。最近,BCI 也在艺术领域得到了应用,能够使用脑活动信号实时进行艺术创作,并通过基于脑活动的艺术环境与表演者、观众或整个观众群体进行互动。现有的技术使用脑活动的特定特征,如 P300 波和 SSVEPs,来控制绘图工具,而不是直接反映输出图像中的脑活动。在本研究中,我们提出了一种新颖的方法,使用潜扩散模型(一种深度神经网络)直接从连续脑活动生成图像。我们使用自由移动大鼠的新皮层的局部场电位来演示这项技术。该系统将记录的脑活动连续转换为图像。我们从脑活动生成图像的端到端方法为创意表达和实验开辟了新的可能性。值得注意的是,我们的结果表明,生成的图像成功地反映了基础神经活动的动态和随机性质,为脑功能可视化提供了一种独特的方法。