Suppr超能文献

在目标驱动的学习行为中,神经流形下的可塑性。

Neural manifold under plasticity in a goal driven learning behaviour.

机构信息

Department of Bioengineering, Imperial College London, London, United Kingdom.

出版信息

PLoS Comput Biol. 2021 Feb 5;17(2):e1008621. doi: 10.1371/journal.pcbi.1008621. eCollection 2021 Feb.

Abstract

Neural activity is often low dimensional and dominated by only a few prominent neural covariation patterns. It has been hypothesised that these covariation patterns could form the building blocks used for fast and flexible motor control. Supporting this idea, recent experiments have shown that monkeys can learn to adapt their neural activity in motor cortex on a timescale of minutes, given that the change lies within the original low-dimensional subspace, also called neural manifold. However, the neural mechanism underlying this within-manifold adaptation remains unknown. Here, we show in a computational model that modification of recurrent weights, driven by a learned feedback signal, can account for the observed behavioural difference between within- and outside-manifold learning. Our findings give a new perspective, showing that recurrent weight changes do not necessarily lead to change in the neural manifold. On the contrary, successful learning is naturally constrained to a common subspace.

摘要

神经活动通常是低维的,并且主要由少数几个突出的神经协变模式主导。有人假设这些协变模式可以形成用于快速灵活的运动控制的构建块。支持这一观点,最近的实验表明,猴子可以在几分钟的时间内学习适应运动皮层中的神经活动,前提是这种变化在原始低维子空间内,也称为神经流形内。然而,这种在流形内的适应的神经机制尚不清楚。在这里,我们在一个计算模型中表明,由学习的反馈信号驱动的递归权重的修改可以解释在流形内和流形外学习之间观察到的行为差异。我们的研究结果提供了一个新的视角,表明递归权重的变化不一定导致神经流形的变化。相反,成功的学习自然受到共同子空间的限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0145/7864452/8deb8a2b336c/pcbi.1008621.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验