Suppr超能文献

MR-SPLIT:一种在单样本 Mendelian 随机化研究中解决选择偏倚和弱工具变量偏倚的新方法。

MR-SPLIT: A novel method to address selection and weak instrument bias in one-sample Mendelian randomization studies.

机构信息

Department of Statistics and Probability, Michigan State University, East Lansing, Michigan, United States of America.

Department of Medicine, Michigan State University, East Lansing, Michigan, United States of America.

出版信息

PLoS Genet. 2024 Sep 6;20(9):e1011391. doi: 10.1371/journal.pgen.1011391. eCollection 2024 Sep.

Abstract

Mendelian Randomization (MR) is a widely embraced approach to assess causality in epidemiological studies. Two-stage least squares (2SLS) method is a predominant technique in MR analysis. However, it can lead to biased estimates when instrumental variables (IVs) are weak. Moreover, the issue of the winner's curse could emerge when utilizing the same dataset for both IV selection and causal effect estimation, leading to biased estimates of causal effects and high false positives. Focusing on one-sample MR analysis, this paper introduces a novel method termed Mendelian Randomization with adaptive Sample-sPLitting with cross-fitting InstrumenTs (MR-SPLIT), designed to address bias issues due to IV selection and weak IVs, under the 2SLS IV regression framework. We show that the MR-SPLIT estimator is more efficient than its counterpart cross-fitting MR (CFMR) estimator. Additionally, we introduce a multiple sample-splitting technique to enhance the robustness of the method. We conduct extensive simulation studies to compare the performance of our method with its counterparts. The results underscored its superiority in bias reduction, effective type I error control, and increased power. We further demonstrate its utility through the application of a real-world dataset. Our study underscores the importance of addressing bias issues due to IV selection and weak IVs in one-sample MR analyses and provides a robust solution to the challenge.

摘要

孟德尔随机化(MR)是一种广泛应用于评估流行病学研究中因果关系的方法。两阶段最小二乘法(2SLS)是 MR 分析中的主要技术。然而,当工具变量(IVs)较弱时,它可能会导致有偏差的估计。此外,当同一数据集同时用于 IV 选择和因果效应估计时,可能会出现赢家诅咒的问题,导致因果效应的估计值有偏差和高假阳性率。本文专注于单样本 MR 分析,提出了一种新的方法,称为基于自适应样本分割与交叉拟合工具的孟德尔随机化(MR-SPLIT),旨在解决 2SLS IV 回归框架下由于 IV 选择和弱 IV 引起的偏差问题。我们表明,MR-SPLIT 估计量比其对应的交叉拟合 MR(CFMR)估计量更有效。此外,我们引入了一种多样本分割技术来增强方法的稳健性。我们进行了广泛的模拟研究,比较了我们的方法与其他方法的性能。结果强调了它在减少偏差、有效控制Ⅰ型错误和提高功效方面的优越性。我们通过应用真实数据集进一步证明了它的实用性。我们的研究强调了在单样本 MR 分析中解决由于 IV 选择和弱 IV 引起的偏差问题的重要性,并为这一挑战提供了一个稳健的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/387b/11410202/bf396d58a811/pgen.1011391.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验