Khoramian Reza, Issakhov Miras, Pourafshary Peyman, Gabdullin Maratbek, Sharipova Altynay
School of Mining and Geosciences, Nazarbayev University, Astana, Kazakhstan.
Kazakh-British Technical University, Almaty, Kazakhstan.
Adv Colloid Interface Sci. 2024 Nov;333:103296. doi: 10.1016/j.cis.2024.103296. Epub 2024 Aug 30.
Nanoparticles improve traditional Enhanced Oil Recovery (EOR) methods but face instability issues. Surface modification resolves these, making it vital to understand its impact on EOR effectiveness. This paper examines how surface-modified nanoparticles can increase oil recovery rates. We discuss post-synthesis modifications like chemical functionalization, surfactant and polymer coatings, surface etching, and oxidation, and during-synthesis modifications like core-shell formation, in-situ ligand exchange, and surface passivation. Oil displacement studies show surface-engineered nanoparticles outperform conventional EOR methods. Coatings or functionalizations alter nanoparticle size by 1-5 nm, ensuring colloidal stability for 7 to 30 days at 25 to 65 °C and 30,000 to 150,000 ppm NaCl. This stability ensures uniform distribution and enhanced penetration through low-permeability (1-10 md) rocks, improving oil recovery by 5 to 50 %. Enhanced recovery is achieved through 1-25 μm oil-in-water emulsions, increased viscosity by ≥30 %, wettability changes from 170° to <10°, and interfacial tension reductions of up to 95 %. Surface oxidation is suitable for carbon-based nanoparticles in high-permeability (≥500 md) reservoirs, leading to 80 % oil recovery in micromodel studies. Surface etching is efficient for all nanoparticle types, and combining it with chemical functionalization enhances resistance to harsh conditions (≥40,000 ppm salinity and ≥ 50 °C). Modifying nanoparticle surfaces with a silane coupling agent before using polymers and surfactants improves EOR parameters and reduces polymer thermal degradation (e.g., only 10 % viscosity decrease after 90 days). Economically, 500 ppm of nanoparticles requires 56.25 kg in a 112,500 m reservoir, averaging $200/kg, and 2000 ppm of surface modifiers require 4 kg at $3.39/kg. This results in 188,694.30 barrels, or $16,039,015.50 at $85 per barrel for a 20 % increase in oil recovery. The economic benefits justify the initial costs, highlighting the importance of cost-effective nanoparticles for EOR applications.
纳米颗粒改善了传统的提高采收率(EOR)方法,但面临稳定性问题。表面改性解决了这些问题,因此了解其对EOR效果的影响至关重要。本文研究了表面改性的纳米颗粒如何提高原油采收率。我们讨论了合成后的改性方法,如化学官能化、表面活性剂和聚合物涂层、表面蚀刻和氧化,以及合成过程中的改性方法,如核壳形成、原位配体交换和表面钝化。驱油研究表明,表面工程纳米颗粒的性能优于传统的EOR方法。涂层或官能化使纳米颗粒尺寸改变1-5纳米,在25至65°C和30000至150000 ppm NaCl条件下可确保胶体稳定性7至30天。这种稳定性确保了纳米颗粒在低渗透率(1-10 md)岩石中的均匀分布和增强渗透,使原油采收率提高5%至50%。通过1-25μm的水包油乳液实现采收率提高,粘度增加≥30%,润湿性从170°变为<10°,界面张力降低高达95%。表面氧化适用于高渗透率(≥500 md)油藏中的碳基纳米颗粒,在微观模型研究中可实现80%的原油采收率。表面蚀刻对所有类型的纳米颗粒都有效,将其与化学官能化相结合可增强对恶劣条件(盐度≥40000 ppm和温度≥50°C)的耐受性。在使用聚合物和表面活性剂之前,用硅烷偶联剂对纳米颗粒表面进行改性可改善EOR参数并减少聚合物热降解(例如,90天后粘度仅降低10%)。从经济角度来看,在一个112500立方米的油藏中,500 ppm的纳米颗粒需要56.25千克,平均价格为200美元/千克,2000 ppm的表面改性剂需要4千克,价格为3.39美元/千克。这可实现188694.30桶原油采收,以每桶85美元计算,采收率提高20%可带来16039015.50美元的收益。经济效益证明了初始成本的合理性,凸显了具有成本效益的纳米颗粒在EOR应用中的重要性。