Cheng Hai-Long, Lee Seul-Yi, Chu Na, Lee Se-Yeol, Jin Fan-Long, Park Soo-Jin
Department of Polymer Materials, Jilin Institute of Chemical Technology, Jilin 132022, China.
Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin 17104, Republic of Korea.
Polymers (Basel). 2025 Jul 11;17(14):1922. doi: 10.3390/polym17141922.
Thermally conductive polymer composites are essential for effective heat dissipation in electronic packaging, where both thermal management and mechanical reliability are critical. Although diglycidyl ether of bisphenol-A (DGEBA)-based epoxies exhibit favorable properties, their intrinsically low thermal conductivity limits broader applications. Incorporating conductive fillers, such as expanded graphite (EG) and metal powders, enhances heat transport but often compromises mechanical strength due to poor filler-matrix compatibility. In this study, we address this trade-off by employing a titanate coupling agent to surface-modify aluminum (Al) fillers, thereby improving interfacial adhesion and dispersion within the DGEBA matrix. Our results show that incorporating 10 wt% untreated Al increases thermal conductivity from 7.35 to 9.60 W/m·K; however, this gain comes at the cost of flexural strength, which drops to 18.29 MPa. In contrast, titanate-modified Al (Ti@Al) not only preserves high thermal conductivity but also restores mechanical performance, achieving a flexural strength of 35.31 MPa (at 5 wt% Ti@Al) and increasing impact strength from 0.60 to 1.01 kJ/m. These findings demonstrate that interfacial engineering via titanate coupling offers a compelling strategy to overcome the thermal-mechanical trade-off in hybrid composites, enabling the development of high-performance materials for advanced thermal interface and structural applications.
导热聚合物复合材料对于电子封装中的有效散热至关重要,在电子封装中,热管理和机械可靠性都至关重要。尽管双酚A二缩水甘油醚(DGEBA)基环氧树脂具有良好的性能,但其固有的低导热率限制了其更广泛的应用。加入导电填料,如膨胀石墨(EG)和金属粉末,可以增强热传递,但由于填料与基体的相容性差,往往会损害机械强度。在本研究中,我们通过使用钛酸酯偶联剂对铝(Al)填料进行表面改性来解决这种权衡问题,从而改善其在DGEBA基体中的界面粘附性和分散性。我们的结果表明,加入10 wt%未处理的Al可使热导率从7.35提高到9.60 W/m·K;然而,这种提高是以弯曲强度为代价的,弯曲强度降至18.29 MPa。相比之下,钛酸酯改性的Al(Ti@Al)不仅保持了高导热率,还恢复了机械性能,在加入5 wt% Ti@Al时弯曲强度达到35.31 MPa,冲击强度从0.60提高到1.01 kJ/m。这些发现表明,通过钛酸酯偶联进行界面工程提供了一种引人注目的策略,以克服混合复合材料中的热-机械权衡,从而能够开发用于先进热界面和结构应用的高性能材料。