Cantisani Vito, Bojunga Jörg, Durante Cosimo, Dolcetti Vincenzo, Pacini Patrizia
Department of Radiology, "Sapienza" - University of Rome, ROME, Italy.
Med. Klinik I, Johann W.-Goethe-Universitätskliniken, Frankfurt, Germany.
Ultraschall Med. 2025 Feb;46(1):14-35. doi: 10.1055/a-2329-2866. Epub 2024 Sep 6.
Thyroid nodules are common incidental findings. Most of them are benign, but many unnecessary fine-needle aspiration procedures, core biopsies, and even thyroidectomies or non-invasive treatments have been performed. To improve thyroid nodule characterization, the use of multiparametric ultrasound evaluation has been encouraged by most experts and several societies. In particular, US elastography for assessing tissue stiffness and CEUS for providing insight into vascularization contribute to improved characterization. Moreover, the application of AI, particularly machine learning and deep learning, enhances diagnostic accuracy. Furthermore, AI-based computer-aided diagnosis (CAD) systems, integrated into the diagnostic process, aid in risk stratification and minimize unnecessary interventions. Despite these advancements, challenges persist, including the need for standardized TIRADS, the role of US elastography in routine practice, and the integration of AI into clinical protocols. However, the integration of clinical information, laboratory information, and multiparametric ultrasound features remains crucial for minimizing unnecessary interventions and guiding appropriate treatments. In conclusion, ultrasound plays a pivotal role in thyroid nodule management. Open questions regarding TIRADS selection, consistent use of US elastography, and the role of AI-based techniques underscore the need for ongoing research. Nonetheless, a comprehensive approach combining clinical, laboratory, and ultrasound data is recommended to minimize unnecessary interventions and treatments.
甲状腺结节是常见的偶然发现。它们大多是良性的,但仍有许多不必要的细针穿刺、粗针活检,甚至甲状腺切除术或非侵入性治疗被实施。为了改善甲状腺结节的特征描述,大多数专家和多个学会都鼓励使用多参数超声评估。特别是,用于评估组织硬度的超声弹性成像和用于洞察血管化情况的超声造影有助于提高特征描述的准确性。此外,人工智能的应用,尤其是机器学习和深度学习,提高了诊断准确性。此外,基于人工智能的计算机辅助诊断(CAD)系统融入诊断过程,有助于进行风险分层并减少不必要的干预。尽管取得了这些进展,但挑战依然存在,包括对标准化甲状腺影像报告和数据系统(TIRADS)的需求、超声弹性成像在常规实践中的作用以及人工智能融入临床方案等问题。然而,整合临床信息、实验室信息和多参数超声特征对于减少不必要的干预和指导适当治疗仍然至关重要。总之,超声在甲状腺结节管理中起着关键作用。关于TIRADS选择、超声弹性成像的一致使用以及基于人工智能技术的作用等未解决问题突出了持续研究的必要性。尽管如此,建议采用结合临床数据、实验室数据和超声数据的综合方法,以尽量减少不必要的干预和治疗。