Suppr超能文献

用于甲状腺结节分类的ELTIRADS框架,将弹性成像、TIRADS和放射组学与可解释机器学习相结合。

ELTIRADS framework for thyroid nodule classification integrating elastography, TIRADS, and radiomics with interpretable machine learning.

作者信息

Barzegar-Golmoghani Erfan, Mohebi Mobin, Gohari Zahra, Aram Sadaf, Mohammadzadeh Ali, Firouznia Sina, Shakiba Madjid, Naghibi Hamed, Moradian Sadegh, Ahmadi Maryam, Almasi Kazhal, Issaiy Mahbod, Anjomrooz Mehran, Tavangar Seyed Mohammad, Javadi Sheida, Bitarafan-Rajabi Ahmad, Davoodi Mohammad, Sharifian Hashem, Mohammadzadeh Maryam

机构信息

Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran.

Institut de Biologie Valrose (IBV), Université Côte d'Azur, CNRS, Inserm, Nice, France.

出版信息

Sci Rep. 2025 Mar 13;15(1):8763. doi: 10.1038/s41598-025-93226-8.

Abstract

Early detection of malignant thyroid nodules is crucial for effective treatment, but traditional diagnostic methods face challenges such as variability in expert opinions and limited integration of advanced imaging techniques. This prospective cohort study investigates a novel multimodal approach, integrating traditional methods with advanced machine learning techniques. We studied 181 patients who underwent fine-needle aspiration (FNA) biopsy, each contributing one nodule, resulting in a total of 181 nodules for our analysis. Data collection included sex, age, and ultrasound imaging, which incorporated elastography. Features extracted from these images included Thyroid Imaging Reporting and Data System (TIRADS) scores, elastography parameters, and radiomic features. The pathological results based on the FNA biopsy, provided by the pathologists, served as our gold standard for nodule classification. Our methodology, termed ELTIRADS, combines these features with interpretable machine learning techniques. Performance evaluation showed that a Support Vector Machine (SVM) classifier using TIRADS, elastography data, and radiomic features achieved high accuracy (0.92), with sensitivity (0.89), specificity (0.94), precision (0.89), and F1 score (0.89). To enhance interpretability, we used hierarchical clustering, shapley additive explanations (SHAP), and partial dependence plots (PDP). This combined approach holds promise for enhancing the accuracy of thyroid nodule malignancy detection, thereby contributing to advancements in personalized and precision medicine in the field of thyroid cancer research.

摘要

早期发现甲状腺恶性结节对于有效治疗至关重要,但传统诊断方法面临专家意见存在差异以及先进成像技术整合有限等挑战。这项前瞻性队列研究调查了一种新颖的多模态方法,即将传统方法与先进的机器学习技术相结合。我们研究了181例行细针穿刺(FNA)活检的患者,每人贡献一个结节,共计181个结节用于分析。数据收集包括性别、年龄以及包含弹性成像的超声成像。从这些图像中提取的特征包括甲状腺影像报告和数据系统(TIRADS)评分、弹性成像参数以及影像组学特征。病理学家提供的基于FNA活检的病理结果作为我们结节分类的金标准。我们的方法称为ELTIRADS,将这些特征与可解释的机器学习技术相结合。性能评估表明,使用TIRADS、弹性成像数据和影像组学特征的支持向量机(SVM)分类器具有较高的准确率(0.92),敏感性(0.89)、特异性(0.94)、精确率(0.89)和F1分数(0.89)。为了提高可解释性,我们使用了层次聚类、夏普利值附加解释(SHAP)和偏效应图(PDP)。这种组合方法有望提高甲状腺结节恶性检测的准确性,从而推动甲状腺癌研究领域个性化和精准医学的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1ee/11906654/195acdbb04c6/41598_2025_93226_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验