Suppr超能文献

基于分散固定结构μ综合法的孤立微电网连续时间鲁棒频率调节及与PID和FOPID控制器的对比分析

Continuous-time robust frequency regulation in isolated microgrids with decentralized fixed structure μ-synthesis and comparative analysis with PID and FOPID controllers.

作者信息

Mohammed Abdallah, Kadry Ahmed, Abo-Adma Maged, Samahy Adel El, Elazab Rasha

机构信息

Faculty of Engineering, Helwan University, Cairo, Egypt.

出版信息

Sci Rep. 2024 Sep 5;14(1):20800. doi: 10.1038/s41598-024-70405-7.

Abstract

Isolated microgrids, which are crucial for supplying electricity to remote areas using local energy sources, have garnered increased attention due to the escalating integration of renewable energy sources in modern microgrids. This integration poses technical challenges, notably in mitigating frequency deviations caused by non-dispatchable renewables, which threaten overall system stability. Therefore, this paper introduces decentralized fixed structure robust μ-synthesis controllers for continuous-time applications, surpassing the limitations of conventional centralized controllers. Motivated by the increasing importance of microgrids, this work contributes to the vital area of frequency regulation. The research challenge involves developing a controller that not only addresses the identified technical issues but also surpasses the limitations of conventional centralized controllers. In contrast to their centralized counterparts, the proposed decentralized controllers prove more reliable, demonstrating enhanced disturbance rejection capabilities amidst substantial uncertainties, represented through normalized co-prime factorization. The proposed controllers are designed using the D-K iteration technique, incorporating performance weight filters on control actions to maintain low control sensitivity and ensure specific frequency band operation for each sub-system. Importantly, the design considers unstructured uncertainty up to 40%, addressing real-world uncertainties comprehensively. Rigorous robust stability and performance tests underscore the controller's superiority, demonstrating its robustness against elevated uncertainty levels. Robust stability is verified for all controllers, with the proposed controller showing robust stability against up to 171% of the modeled uncertainty. Notably, the controller boasts a fixed structure with lower order compared to other H-infinity controllers, enhancing its practical implementation. Comparative analyses against Coronavirus Herd Immunity Optimizer tuned Proportional-Integral-Derivative (CHIO-PID) controller and CHIO tuned Fractional-Order Proportional-Integral-Derivative (CHIO-FOPID) controller further validate the superior performance of the proposed solution, offering a significant step towards ensuring the stability and reliability of microgrid systems in the face of evolving energy landscapes.

摘要

孤立微电网对于利用当地能源为偏远地区供电至关重要,由于现代微电网中可再生能源的集成不断增加,其受到了越来越多的关注。这种集成带来了技术挑战,尤其是在减轻由不可调度可再生能源引起的频率偏差方面,这威胁到整个系统的稳定性。因此,本文介绍了用于连续时间应用的分散固定结构鲁棒μ综合控制器,克服了传统集中式控制器的局限性。受微电网重要性日益增加的推动,这项工作为频率调节这一关键领域做出了贡献。研究挑战在于开发一种控制器,它不仅要解决已识别的技术问题,还要超越传统集中式控制器的局限性。与集中式控制器相比,所提出的分散式控制器被证明更可靠,在通过归一化互质因式分解表示的大量不确定性中表现出更强的抗干扰能力。所提出的控制器使用D-K迭代技术进行设计,在控制动作上纳入性能权重滤波器,以保持低控制灵敏度并确保每个子系统在特定频段运行。重要的是,该设计考虑了高达40%的非结构化不确定性,全面解决了现实世界中的不确定性问题。严格的鲁棒稳定性和性能测试强调了该控制器的优越性,证明了其在更高不确定性水平下的鲁棒性。所有控制器的鲁棒稳定性均得到验证,所提出的控制器对高达171%的建模不确定性表现出鲁棒稳定性。值得注意的是,与其他H∞控制器相比,该控制器具有固定结构且阶数较低,增强了其实际应用价值。与冠状病毒群体免疫优化器调谐的比例积分微分(CHIO-PID)控制器和CHIO调谐的分数阶比例积分微分(CHIO-FOPID)控制器的对比分析进一步验证了所提出解决方案的卓越性能,朝着确保微电网系统在不断变化的能源格局下的稳定性和可靠性迈出了重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d2d/11379935/b14138ec3d39/41598_2024_70405_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验